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ABSTRACT: Uncertain optimization problem is an important tool in the field of optimization and are widely used in real-

world applications. In this paper, we consider an uncertain single-objective optimization problem with uncertainty in the 

coefficients of both objective function and constraints. We formulate the proposed problem and show that the 

corresponding chance-constrained optimization model can be converted into a deterministic model by considering linear 

and normal uncertainty distributions. This paper mainly aims to provide the solution techniques for an uncertain single-

objective optimization problem and show a comparison between the optimial objective values in relation to uncertainty 

levels, under linear and normal uncertainty distributions. Finally, two numerical examples are presented to illustrate the 

usefulness of the proposed method. 

KEYWORDS: Uncertain optimization, single-objective optimization, chance-constrained optimization, linear uncertainty 

distribution, normal uncertainty distribution.  
 

1 INTRODUCTION: 
Optimization is a fundamental concept in operations research used extensively in several disciplines, such as 

engineering, economics, and finance. For traditional optimization, in the literature, many researchers have worked so far on 

developing effective methodologies and algorithms to solve problems associated with exact and deterministic coefficients 

of the objective and constraint functions. However, in most real-world optimization problems such as finance, logistics, and 

energy management, uncertainty is inherent where coefficients are often uncertain, meaning that they are not exactly 

known, which may lead significant impact on the reliability, effectiveness of the solutions and decrease decision-making 

quality [1, 2, 4-6]. The reasons for this data uncertainty includes computational and estimation errors, imprecise data, or 

lack of informations. In such case, to obtain solutions that remain feasible and optimal, the decision maker must tackle the 

uncertainty. 

Various uncertainty optimization techniques, such as robust optimization [1-3, 7, 14], stochastic programming [4-6, 

8, 15, 16], and distributionally robust optimization [9, 10] have been developed to address this challenge, and provide more 

reliable and resilient solutions. These powerful techniques have been effectively applied in various fields, including finance 

[11], logistics [12], and energy systems [13, 15]. 

Stochastic programming was established to deal uncertainty and solve uncertainty related problems. Avriel and 

Wilde [17] developed stochastic concept for geometric programming problem with deterministic exponents and coefficients 

that are nonnegative random variables. Shiraz et al. [18] used sensitivity analysis to investigate the stability and robustness 

of a chance-constrained Data Envelopment Analysis(DAE) model with random-rough data inputs and outputs. The authors 

considered a chance-constrained DEA model with random data and solved it by proposing a deterministic equivalent model 

with quadratic constraints. 

Uncertainty theory is a recent scope of research developed solely by Liu[19] and extensive work has been done by 

the author on some research problems in uncertainty theory [20] and for solving uncertain geometric programing problems 

[21]. Charnes et al.[22, 23] used chance-constrained techniques via uncertainty theory for solving critical path analysis. 

Shiraz et al. [24] developed geometric programming model using uncertainty theory for problems with the objective and 

constraint coefficients that follow normal, linear, and zigzag uncertainty distributions. Solano-Charris et al. [25] used 

unconventional techniques such as the Non-dominated Sorting Genetic Algorithm (NSGAII) and the Multiobjective 

Evolutionary Algorithm (MOEA) to solve bi-objective robust vehicle routing problem with uncertain costs and demands. 

For single-objective stochastic optimization numerous methods have been put forward in the literature to overcome the 

difficulties posed by uncertainty. One popular approach via stochastic programming involves modeling the uncertain 

parameters using probability distributions and solving the resulting optimization problem [5, 8]. Stochastic gradient descent 

and sample average approximation are also popular methods used to solve uncertain single-objective stochastic 

optimization problems by Powell [26]. 
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From the literature survey, we see that a lot of study has been done on typical optimization problems where the 

coefficients in the objective and constraint functions are precise. However, real-world problems not involve precise 

coefficients. For solving uncertainty affected problems via stochastic approach, only geometric programming problem are 

considered in particular to use linear, normal, and zigzag uncertainty distributions. Therefore, we seek for the scope to 

study on the uncertainty-affected single objective optimization problems using chance-contrained approach where the the 

coefficients of the objective functions and constraints are assumed to be uncetrian variables(UV) that follow linear and 

normal uncertainty distributions and show a comparison between the corresponding optimal results. 

- We formulate the uncertain single-objective optimization problems that include uncertain variables in the 

coefficients of objective and constraint functions. 

- The equivalent chance-constrained optimization problem is then developed under linear and normal uncertainty 

distributions. 

- After that, we show the convertion of uncertain chance-constrained models into a deterministic one and solve in a 

conventional way. 

- Numerical examples and comparison between the corresponding optimal results are presented to validate our 

proposed method. 

 

In order to thoroughly investigate the aforementioned problem carefully, the remainder of this paper is organized as 

follows. Section2 is intended to introduce some basic notions and theorems of uncertainty theory and concepts of uncertain 

chance-constrained programming. Section3 describes the formulation of uncertain single-objective optimization in a 

stochastic way. In Section4, we consider the chance-constrained single-objective optimization problem under linear and 

normal uncertainty distributions and show how the uncertain optimization problem can be converted into deterministic 

model. To show the efficiency of the approach, two numerical examples are presented in Section5 illustrating the 

comparison results of optimal objective values between linear and normal uncertainty distributions. Finally, we cover some 

conclusions in Section 6. 

 

2 PRELIMINARIES 
This section addresses some basic notions and major concepts of uncertainty theory and introduces uncertain 

chance-constrained programming, which will be used in the next sections. All concepts and definitions pertaining to 

uncertainty theory presented here are due to [19]. 

 

2.1 Uncertainty Theory 

Definition 2.1 Let   be the  -algebra on a universal set X . Then a set function [0,1]:   is called an uncertain 

measure if it satisfies the following axioms. 

A1. 1=)(X  for the universal set X . (Normality) 

A2. 1,=)()( cEE    for any .XE  (Self-Duality)  

A3. For all countable collection of events 


1=}{ kkE ,   ).(
1=1= kkkk

EE  


   

 

Definition 2.2 Let   is a  algebra on X  and   is an uncertain measure. Then the triplet ),,( X  is said to be an 

uncertainty space.  

 

Definition 2.3 A measurable function R ),,(:  X  is called an uncertain variable(UV), where R  is the set of all 

real numbers.  

 

Definition 2.4 An UV is said to be positive iff 0=0)(   and nonnegative iff 0.=0)<(   

 

Proposition 2.5 Let n ,,, 21   are UVs and f  is a real-valued measurable function. Then the function 

),,,( 21 nf    is an UV.  

 

Definition 2.6 Let n ,,, 21   be UVs on ),,( X . Then, for every event E , 

)()()(=))(( 2121 EEEE nn     and ).)...).=))....( 2121 (E(E(E(E nn    
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Definition 2.7 The uncertainty distribution (UD) for the UV   is a function [0,1]:  R  defined by 

R xxx )(=)(  .  

 

Definition 2.8 An UV   is called linear, if it has a linear UD and mathematically it is defined by,  

 





















bx

bxa
ab

ax

ax

x
1,

<<,

0,

=)(  

 where Rba,  with ab > . An UV that follows linear UD is denoted as ),( baL: .  

 

Definition 2.9 An UV   is called normal, if it follows a normal UD. Mathematically this is defined by,  

 R














 




x
xe

x   ,
3

)(
exp1=)(

1




  

 where R,e  and 0> . An UV that follows normal UD is denoted as ),(  eN: .  

  
Linear UD                                                       Normal UD 

Figure  1: Uncertainty distributions 

   

Definition 2.10 Let   be an UV. The expected value of   is defined by,  

 ,)()(=][
0

0
dssdssE   



  

provided that atleast one of the two integrals is finite.  

 

Proposition 2.11 If n ,, 21   are UVs and f  is real valued function of n ,, 21  , then ),,( 21 nf    is a UV.  

 

Theorem 2.1  Let  ,,, 21 n  be independent UVs on the space ),,( m  with UDs   ,,,,
21 n
  

respectively. If ),,,( 21 nxf    is a constraint function strictly increasing with respect to m ,, 21   and strictly 

decreasing with respect to nmm  ,, 21  , then for (0,1),   
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1

1
21    





nmm
n xfxfm   

.  

Theorem 2.2  Let  ,,, 21 n  be independent UVs on the space ),,( m  with UDs   ,,,,
21 n
  

respectively. If ),,,( 21 nxf    is a constraint function strictly increasing with respect to m ,, 21   and strictly 

decreasing with respect to nmm  ,, 21  , then for (0,1),   

 

)(1))()),(),(1,),(1),(1,(}),,,({ 111

1

11

2

1

1
21    





nmm
n xfxfm 

 

2.2 Uncertain Chance-constrained Programming 

 
 Consider an uncertain optimization problem,  

                         ),(min xf  

                          ,),(s.t.  xh                                                                                       (2.1) 

where x  is the decision vector,   is the uncertain vector and ),( xc  represents the uncertain constraints of the model. In 

the model, the constraints ),( xh  do not provide a deterministic feasible solution, hence, it is preferred for these 

constraints to be hold with a chance  , where   is a predefined uncertainty level and is normally assumed to take values 

from the open interval (0,1) . Consequently, one can use the uncertain measure   to express a chance constraint as,  

                             .}),({  xhm  

 

 

3 PROBLEM FORMULATION 
A conventional deterministic single objective optimization problem of minimum type can be written as,  

 )(min xf  

 ,,1,2,=   ,)(s.t. mjxh jj                                                                                    (3.1) 

where 
nx R  is the decision vector, RR nf :  is the objective function and jh  are the constraints of the optimization 

problem. 

We write any function RR nf :  splitting into n  components as,  

. )(=)()()(=)(
1=

2211 xxxxxf kk

n

k

nn                                                             (3.2) 

 

Thus for each j , RR n

jh :  admits the following form,  

.,1,2,= ),(=)()()(=)(
1=

2211 mjxxxxxh jkjk

n

k

jnjnjjjjj                         (3.3) 

 

Hence accordingly the problem (3.1) can be reformulated as,  

 )(=)(min
1=

xxf kk

n

k

  

 ,,1,2,=,)(=)(s.t. 
1=

mjxxh jjkjk

n

k

j                                                            (3.4) 

where 
nx R  is the decision vector, k  and jk  are the coefficients of the corresponding functions, and 

),1,2,=( mjj   are positive constants. 
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The deterministic optimization problem (3.4) can be converted into an uncertain optimization problem by 

introducing uncertainty in the coefficients k , jk  and j  of the objective functions and the constraints respectively. 

Therefore, the converted uncertain optimization problem can be written as, 

 )(
~

min
1=

xkk

n

k

  

 .,1,2,=,
~

)(
~

s.t. 
1=

mjx jjkjk

n

k

                                                                                (3.5) 

where 
nx R  is the decision vector, jkk 

~
,

~
 are UVs and the constraints model the impact of uncertainty in the 

problem. 

 A variant of the uncertain chance-constrained optimization model can be developed that takes into account the 

minimum expectation with the measuriblity of constraints. For each  , where   is a predefined uncertainty level, the 

equivalent uncertain optimization problem can be written as,  

 

.,1,2,=,
~

)(
~

s.t. 

)(
~

min

1=

1=

mjxm

xE

jjkjk

n

k

kk

n

k



























 (3.6) 

In the following section, we propose a solving method for the uncertain optimization problem (3.6) considering the 

cases where the coefficients are assumed to be UVs with linear and normal UDs. 

 

4 DETERMINISTIC CHANCE-CONSTRAINED MODEL 
In this section, we develop an uncertain single-objective optimization model whose corresponding chance-

constrained counterpart admits an equivalent crisp formulation, where the uncertain coefficients jkk 
~

,
~

 and j
~

 in 

equation (3.6) are assumed to be UVS that follow the linear and normal UDs. 

 

4.1 Uncertain Optimization with Normal Uncertainty Distributions 

Let the coefficients jjkk 
~

,
~

,
~

 in (3.6) be independent normal UVs with distributions characterized by positive 

parameters. That is, ),(
~

 ),,(
~

jkjkjkkkk NN  ::  and ),(
~

jjj N  : , where jjkkjjkk  ,,,,,  are all 

positive real numbers. We now use the following lemma and a theorem to convert the model in equation (3.6) into a 

deterministic program and hence solve the program. 

 

Lemma 4.1  ([19]) The expected value of a normal UV ),(:  eN  is eE =][ .  

 

Theorem 4.1  Let ),,(:~
iii aN   with ni ,1,2,=   and ),(:

~
 bN  be independent normal UVs. Let iV  with 

,,1,2,= ni   be nonnegative variables. Then for every (0,1) , the expression  

  









~~

1=

ii

n

i

Vm  

is equivalent to  

 .
13

1

3

1=








 










































lnbVlna i

i
i

n

i

 

 

 

By Theorem 4.1, the chance constraints in the equation (3.6) transform into a deterministic equivalent, that is, for all 

mj ,1,2,=  ,  
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  







 jjkjk

n

k

xm
~

)(
~

1=

 

is equivalent to  

 .
1

ln
3

)(
1

ln
3

1=








 













































j

jjk

jk

jk

n

k

x  

Also, Lemma 4.1 transforms the objective of the problem (3.6) into a precise value as,  

   ).(=)(
~

=)(
~

1=1=1=

xxExE kk

n

k

kk

n

k

kk

n

k

  







 

 

Consequently, when the coeffients are UVS that follow normal distribution, the model in equation (3.6) is transformed into 

the following crispy model, 

 )(min
1=

xkk

n

k

  

 .,1,2,=,
1

ln
3

)(
1

ln
3

s.t.
1=

mjx
j

jjk

jk

jk

n

k








 











































           (4.1) 

 

4.2  Uncertain Optimization with Linear Uncertainty Distributions 

Let the coefficients jjkk 
~

,
~

,
~

 in equation (3.6) be independent positive linear UVs, that is, 

),(
~

 ),,(
~ b

jk

a

jkjk

b

k

a

kk LL  ::  and ),(
~ b

j

a

jj L  : , where 
b

j

a

j

b

jk

a

jk

b

k

a

k  ,,,,,  are all positive real numbers with 

b

j

a

j

b

jk

a

jk

b

k

a

k  <<,0<<,0<<0 . 

We use Lemma 4.2 and Theorem 4.2 below to obtain a crisp equivalent of the model in equation (3.6) with linear 

UDs. 

 

Theorem 4.2  Let ),1,2,=(~ nii   and 
~

 be independent linear UVs. That is, ),(:~
iii baL  with ,< ii ba  and 

),(:
~

 baL  with  ba < . Let ),,1,2,=( niVi   be nonnegative variables. Then for every (0,1) ,  

 









~~

1=

ii

n

i

Vm  

is equivalent to  

  .)(1)(1
1=

  baVba iii

n

i

  

Lemma 4.2  ([19]) The expected value of the linear UV ),(: baL  is 
2

=][
ba

E


 .  

 
The chance constraints in equation (3.6) admit the following deterministic equivalent by Theorem 4.2, that is, for all 

mj ,1,2,=  ,  

 







 jjkjk

n

k

xm
~

)(
~

1=

 

is equivalent to  

  .)(1)()(1
1=

b

j

a
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b

jk

a
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n

k

x    
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Again, by Lemma 4.2, the objective in the proposed problem (3.6) transforms into a deterministic one of the 

following form,  

  ).(
2

=)(
~

=)(
~

1=1=1=

xxExE k

b

k

a

k
n

k

kk

n

k

kk

n

k




 






 








  

The model in Eq. (3.6) is therefore equivalent to the following crispy model when the coefficients are UVs with a 

linear distribution,  

)(
2

min
1=

xk

b

k

a

k
n

k











 
  

                            .,1,2,=,)(1)()(1s.t.
1=

mjx b

j

a

jjk

b

jk

a

jk

n

k

                         (4.2) 

 

5 NUMERICAL EXAMPLES 
In this section, we demonstrate the effectiveness of the proposed model for the uncertain optimization program with 

numerical examples. In the situations of both linear and normal uncertain distributions, we solve the problem at some 

different predetermined degrees of uncertainty, using the same test problem. 

 

Example 5.1  Let us consider the following uncertain optimization problem.  

2211

~~
:)( min xxxf    

10=
~~

:)(   . 2121111 xxxhts    

                                                                    0.0,5
~~

:)(      212221212  xxxxxh                                (5.1) 

As use the linear and normal uncertainty distributions for this problem. 

 
Linear Uncertainty Distributions: Let the UVs in the model equation (5.1) follow linear UDs such that, 

).
3

4
,

3

2
(

~
),

3

2
,

3

1
(

~
(30,40),

~
(25,35),

~
(15,25),

~
(10,20),

~
2221121121 LLLLLL ::::::   

The use of equation (4.2) transforms the above model into the following deterministic optimization problem with 

specified values of  .  

21 2015:)( min xxxf   

10=30)(1025)(10:)(  s.t. 211 xxxh    

                                                 51)(
3

2
1)(

3

1
:)(    212  xxxh                                                 (5.2) 

 We evaluate the problem at three distinct uncertainty levels( ) and solve for the same. 

 

Case 1: .
4

1
=  The problem in equation (5.2) becomes the following optimization problem,  

                                          21 2015 min xx   

                                        10=32.527.5 s.t. 21 xx   

                                        5
6

5

12

5
       21  xx                                                                            (5.3) 

In this case, the optimal solution is 0=0.364,= 21 xx  and the optimal objective value is 5.455=minf . 

 

Case 2: .
2

1
=  The problem in equation (5.2) transforms into the subsequent optimization problem,  
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21 2015 min xx   

103530      .. 21  xxts  

                                                    5
2

1
          21  xx                                                                             (5.4) 

The problem in Eq. (5.4) gives the optimal solution is 0=0.333,= 21 xx  with optimal objective value 5=minf . 

 

Case 3: .
4

3
=  The problem in Eq. (5.4) becomes the following optimization problem,  

21 2015 min xx   

10=37.532.5      .. 21 xxts   

                                                            5
6

7

12

7
          21  xx                                                         (5.5) 

In this case, the problem in Eq. (5.4) admits the optimal solution 0=0.3077,= 21 xx  with optimal objective 

value 4.6154=minf . 

 

 

 

 

               

(a) 
4

1
=                                                    (b) 

2

1
=  

Figure  2: Constrained region for 
4

1
=  and 

2

1
=  under linear UVs. 

   
Table  1: Optimal solutions with linear UD    

Uncertanty level )(  Optimal solution( 21, xx ) Objective value( f ) 

0.1 (0.385, 0) 5.769 

0.2 (0.370, 0) 5.555 

0.3 (0.357, 0) 5.357 

0.4 (0.349, 0) 5.172 

0.5 (0.333, 0) 5.000 

0.6 (0.323, 0) 4.839 
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0.7 (0.313, 0) 4.687 

0.8 (0.303, 0) 4.545 

0.9 (0.294, 0) 4.412 

 
Table 1 shows the optimal solutions obtained for problem (5.2) under linear UVs along with their corresponding 

objective values. It is observed from the table that the optimal objective value decreases as   increases. 

 

 

Normal Uncertainty Distributions: Let the UV’s in Eq. (5.1) follow the normal UDs as,  

).
5

1
,

3

4
(

~
),

10

1
,

2

1
(

~
(20,5),

~
(15,4),

~
(10,3),

~
(8,2),

~
2221121121 NNNNNN ::::::   We use equation(??) and the 

normal UDs defined above to transform the model in equation(??) into a deterministic optimization problem as below,  

 21 108 :)(min xxxf   

 10=
1

ln
35

20
1

ln
34

15:)(s.t. 211 xxxh

















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


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












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


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













 

 5
1

ln
5

3

3

4

1
ln

10

3

2

1
:)( 212 

















































 xxxh










                                 (5.6) 

 

We present the solution methodology for the above problem at three distint values of   and study the optimal 

solutions. 

 

Case 1: 
4

1
= . For this value of  , the problem in Eq. (5.6) transforms into the subsequent optimization problem,  

21 108 min xx   

10=16.97112.577 s.t. 21 xx   

                                                            51.2120.439 21  xx                                                           (5.7) 

In this case, the optimal solution is 0=0.795,= 21 xx  and the optimal objective value is 6.36=minf . 

 

Case 2: 
2

1
= . In this case, the transformed optimization problem of  Eq. (5.6) is given as,  

21 108 min xx   

10=2015 .. 21 xxts   

                                                                 5
3

4

2

1
21  xx                                                                  (5.8) 

In this case, the optimal solution is 0=0.667,= 21 xx  and the optimal objective value is 5.333=minf . 

 

Case 3: 
4

3
= . For this value of  , the problem in Eq. (5.9) transforms into the subsequent optimization problem,  

21 108 min xx   

10=23.02817.423 .. 21 xxts   

                                                         51.4540.560 21  xx                                                         (5.9) 



Single-objective Optimization using Chance-constrained Model: A Comparison Result Between…. 

www.ijlrem.org                                                                  10 | Page 

The optimal solution is 0=0.574,= 21 xx  and the optimal objective value is 4.592=minf . 

 

 
Table 2 shows the optimal solutions with the assignined weights into the weighted sum function. 

             

(a) 
4

1
=                                                             (b) 

2

1
=  

Figure  3: Constrained region for 
4

1
=  and 

2

1
=  under normal UVs. 

   
Table  2: Optimal solutions with normal UD    

Uncertanty level )(  Optimal solution( 21, xx ) Objective value( f ) 

0.1 (0.985, 0) 7.878 

0.2 (0.837, 0) 6.699 

0.3 (0.762, 0) 6.093 

0.4 (0.709, 0) 5.671 

0.5 (0.667, 0) 5.333 

0.6 (0.629, 0) 5.033 

0.7 (0.593, 0) 4.743 

0.8 (0.554, 0) 4.430 

0.9 (0.504, 0) 4.031 

 
The optimal solutions obtained for the problem in Eq. (5.2) under linear UV is shown in Table 2, with their 

corresponding objective values. It is observed from the table that the optimal objective values decreases as   increases.  
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Figure  4: Comparison of the optimal objective values for linear and normal UVs. 

 

Example 5.2 In this example we consider a more general scenario of uncertain optimization problem where the constraints 

are nonlinear functions and both the coefficients and the lmits of the constraints are assumed to be UVs.  

 

2211

~~
=)( max xxxf    

1

2

212

2

1111

~~~
=)(  s.t.   xxxh  

2

2

222

2

1212

~~~
=)(        xxxh  

                                                                           0.0, 21  xx                                                          (5.10) 

 

The above optimization problem is maximization problem to be solved in a circular disc basically and moreover, as 

in example 5.1, we use the linear and normal uncertainty distributions for this problem. 

 

 
2D view of feasible disc                                 3D view of feasible disc 

Figure  5: Disc as feasible region for problem (5.10).  
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Linear Uncertainty Distributions: Let the UVs in the problem in Eq. (5.10) follow linear UDs such that 

(3,4).
~

(4,6),
~

),
2

7
,

2

5
(

~
(1,2),

~
),

2

5
(3,

~
(4,5),

~
),

2

5
,

2

9
(

~
(5,7),

~
222211121121 NLLLLLNL ::::::::   

Use of linear UDs transform the model in Eq. (5.10) into a deterministic optimization problem as,  

 

21 56 max xx   

  2)3(9
2

1
)(5 s.t. 2

2

2

1 xx  

                                                    .4)2(4)
2

5
( 2

2

2

1   xx                                                  (5.11) 

We evaluate the solution at three distinct values of   and show the optimal result for more in Table 5.2. 

Case 1: .
4

1
=  The problem in Eq. (5.11) becomes the following optimization problem,  

21 56 max xx   

1.754.134.75  s.t. 2

2

2

1  xx  

                                                             3.754.52.75 2

2

2

1  xx                                                         (5.12) 

The optimal solution in this case is 0.498=0.978,= 21 xx  and the corresponding optimal objective value is 

8.362=maxf . 

Case 2: .
2

1
=  The transformed problem is given as  

21 56max xx   

1.53.754.5  s.t. 2

2

2

1  xx  

                                                                    3.553 2

2

2

1  xx                                                               (5.13) 

The optimal solution is 0.454=0.907,= 21 xx  with optimal objective value 7.71=maxf . 

 

Case 3: .
4

3
=  The transformed optimization problem is,  

21 56 max xx   

1.253.374.25  s.t. 2

2

2

1  xx  

                                                        3.255.53.25 2

2

2

1  xx                                                        (5.14) 

The above problem admits the optimal solution is 0.415=0.842,= 21 xx  with optimal objective value 

7.126=maxf . 

 
Table  3: Optimal solutions for linear UD 

Uncertanty level )(  Optimal solution( 21, xx ) Objective value( f ) 

0.1 (1.024, 0.528) 8.728 

0.2 (0.993, 0.508) 8.500 

0.3 (0.964, 0.489) 8.227 

0.4 (0.935, 0.470) 7.965 

0.5 (0.907, 0.454) 7.714 

0.6 (0.880, 0.437) 7.472 
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0.7 (0.855, 0.422) 7.239 

0.8 (0.829, 0.407) 7.014 

0.9 (0.805, 0.393) 6.796 

 

Table 3 shows the optimal solutions obtained for the problem in Eq.(5.10) under linear UVs along with their 

corresponding optimal objective values. Although it is a maximization problem, we can still see from the table that the 

optimal objective value decrease as   increases. 

 
Normal Uncertainty Distributions: Let the UVs in Eq. (5.10) follow normal UDs respectively as, 

(5,1).
~

(6,3),
~
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2
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1
(2,
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~
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2

1
(2,

~
(4,2),

~
(5,2),

~
222211121121 NNNNNNNN ::::::::   

 

We use Eq. (4.1)  and the normal UDs to transform the model (5.10) into a deterministic optimization problem as, 

 21 45max xx   
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Case 1: 
4

1
= . The problem in Eq. (5.15) transforms into the following optimization problem,  

                                      21 45 max xx   

                                    1.9392.8781.697 s.t. 2

2

2

1  xx  

                                4.394.4.1823.697 2

2

2

1  xx                                                              (5.16) 

 The optimal solution is 0.616=0.871,= 21 xx  with optimal objective value 6.820=maxf . 

 

Case 2: 
2

1
= . In this case, the transformed problem of Eq. (5.11) is given as,  

 21 45 max xx   

 232 s.t. 2

2

2

1  xx  

 5.64 2

2

2

1  xx                                                                                                                         (5.17)                                                    

The optimal solution in this case is 0.499=0.936,= 21 xx  and 6.677=maxf . 

 

Case 3: 
4

3
= . The problem in equation (??) transforms into the optimization problem as,  

 21 45 max xx   

 2.0607.8172.302 s.t. 2

2

2

1  xx  

 5.605.7.8174.302 2

2

2

1  xx                                                                                            (5.18) 

The optimal solution is 0.432=0.981,= 21 xx  and 6.637=maxf . 

 

Table 4 shows the optimal solutions along with corresponding objective values. Similarly, in this case, the optimal 

objective values decrease as   increases.  
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Table  4: Optimal solutions for normal UD    

Uncertanty level )(  Optimal solution( 21, xx ) Objective value( f ) 

0.1 (0.763, 0.875) 7.317 

0.2 (0.849, 0.663) 6.896 

0.3 (0.889, 0.582) 6.771 

0.4 (0.915, 0.534) 6.711 

0.5 (0.936, 0.499) 6.677 

0.6 (0.954, 0.470) 6.655 

0.7 (0.972, 0.444) 6.641 

0.8 (0.991, 0.412) 6.634 

0.9 (1.016, 0.389) 6.630 

Figure  6: Comparison of the optimal objective values for linear and normal Uvs. 

   

Discussion: In both examples only linear and normal UVs are assumed, and it is obvious to observe from the data tables 

that in each case, as the uncertainty level increases, the optimal objective values decreses. Fig.5 and Fig.6 make it 

somewhat easier to support the validation of this statement. Moreover, in this two figures, a comparison of the optimal 

objective values are plotted against the change of uncertainty levels and they both have the same characteristics. 

  

              
 

Figure  6: Comparison of the optimal objective values for linear and normal UVs. 

 

6 Conclusion 
In various disciplines, there has been a growing interest in solving uncertain optimization problems. This topic has 

parallelly been explored by researchers in both mathematical optimization and decision making under deep uncertainty. The 

former focuses mostly on theory developments, while the later concentrates on practical problems. In traditional 

optimization problems the parameters are deterministic and precise. However, in real-world optimization problems, the 

situaion is not the same, and parameters are often uncertain and imprecise. Since the recent past, uncertainty theory has 

been used to address these types of uncertain problems. In this paper, we solve an uncertain single objective optimization 

problem under linear and normal uncertainty distribution. We develop the equivalent chance-constrained models and solve 



Single-objective Optimization using Chance-constrained Model: A Comparison Result Between…. 

www.ijlrem.org                                                                  15 | Page 

the problem by transforming it in into conventional optimization problem with crisp coefficinets. To illustrate the 

effectiveness of the methods and algorithms, two numerical examples are provided in this context. We solve two numerical 

problems under linear and normal uncertainty distributions for different uncertainty levels and obtain the corresponding 

expected values of the objective function. The expected cost function is then plotted against the uncertainty level and the 

graph shows the comparison downfall of the objective values as the uncertainty level increases. 

In this paper, our main focus was to solve an uncertain single objective optimization problem when the coefficients 

are assumed to be UVs that follow linear and normal UDs and show how the expected values of the objective function 

change in relation to uncertainty levels. We are in a satisfactory comment that we are successful in doing the same.  
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