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Abstract: Recently discrete distributions have played a significant role in modeling real world scenarios. Though a large 

variety of discrete distributions are originated, the existing distributions are unfit to model many practical situations. Now 

a days, various discretization methods are proposed to derive discrete versions of continuous distributions especially for 

modeling survival data. In this article, we consider a review of various discretization methods and the distributions thus 

discretized so far. The discrete analogues of some continuous distributions viz. Burr, Exponential, Gamma, Generalized 

Exponential, Laplace, Log Cauchy, Normal, Pareto, Rayleigh and Skew Laplace are reviewed. A comparison on various 

discretization methods is also carried out. 

Keywords: Discretization, Generalized Exponential Distribution, Hazard rate function, Laplace Distribution, Rayleigh 

Distribution. 

 

1. Introduction 
In the present scenario, discrete distributions are widely used in modeling survival data instead of continuous 

distributions. Though a lot of continuous lifetime distributions are proposed by many researchers, it is not always 

possible to measure the life time of a gadget on a continuous scale.   When we use a discrete distribution in modeling 

lifetime data, it usually leads to a multinomial distribution. But there exists many practical situations which urged to 

more lifetime distributions to model and hence many continuous distributions have to be discretized. There are a lot 

of research work s related to this are available in literature viz. Lisman and van Zuylen (1972), Kemp(1997), Das 

gupta (1993) and Szablowski (2001), Roy (2003,2004),  Inusahand Kozubowski (2006), Kozubowski and Inusah 

(2006), Krishna and Pundir(2009), Alzaatrech et al.(2012), Nekoukhou et al. (2012), Nekoukhou and Bidram (2015), 

Lekshmi and Sebastian (2014), Chakraborty and Chakravarthy(2016), Abebe and Shanker (2018), Krishnakumari and 

Dais (2020), Krishnakumari and Dais (2021). 

The remaining part of this article is organized as follows. The discretization methods proposed by many 

researchers are reviewed in Section 2. In Section 3, discrete analogues of continuous life time distributions derived using 

the methods proposed in Section 2 are reviewed. A comparison of various discretization methods is discussed in 

Section 4. 

 

2. Discretization Methods 
Discrete distributions play an extensive role in modeling real life situations. Hence a large number of discrete 

distributions are proposed and studied by many researchers. For details, see the books by Balakrishnan and Nevzorov 

(2003), Jonson et al. (2005) and Consul and Famoye (2006). In this section, we made a survey on the discretization 

methods proposed by many researchers. 

 

2.1 Method 1 

A discrete analogue of Pearson’s continuous system is developed by Katz (1945) using the relationship 
𝑷𝒙 + 𝟏

𝑷𝒙

=
𝒂 + 𝒃𝒙

𝟏 + 𝒙
;    𝒙 = 𝟎, 𝟏, 𝟐… 

 (1) 

Kemp (1968) generated a family of existing discrete distributions by generalizing (1) discussed in Jonson et al. 

(2005). 

 

2.2 Method 2 

For any continuous random variable on R, with probability density function f(x), its discrete probability mass 

function is given by 

 

𝑷 𝑿 = 𝒙 =
𝒇(𝒙)

 𝒇(𝒖)+∞
𝒖=−∞

, 𝒙 = ⋯ ,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐…  

   (2) 



Discretizing Continuous Distributions- A Comparative Study 
 

www.ijlrem.org                                                                  10 | Page 

2.3 Method  3 

Another method is from reliability perspective proposed by Roy (2003, 2004). If the survival function of a 

continuous random variable is denoted by 𝑆 𝑥 = 𝑃(𝑋 ≥ 𝑥), and if times are grouped into unit intervals, the discrete 

observed variable 𝑑𝑋 = [𝑋], the largest integer less than or equal to X, has the probability function 

 
𝑷 𝒅𝑿 = 𝒙 = 𝑺 𝒙 − 𝑺 𝒙 + 𝟏 ;        𝒙 = 𝟎, 𝟏, 𝟐…. 

 (3) 

 
2.4 Method 4 

If X is a continuous random variable belongs to the extended exponential family with distribution function 

𝐅 𝐱 = 𝟏 − 𝐞[−∝𝐤𝛉 𝐱  ], 
Then its discrete version belongs to the telescopic family of distributions defined by Roknabadi et al. (2009), 

which has the probability mass function 

𝐏 𝐗 = 𝐱 = 𝐪𝐤𝛉 𝐱 − 𝐪𝐤𝛉 𝐱+𝟏 ;         𝐱 = 𝟎, 𝟏, 𝟐… 
 (4) 

Where 𝑘𝜃 𝑥  is strictly increasing function of x, 0<q<1. 

 

2.5 Method 5 

Ganji and Gharari (2018) presented a new method for discretization of most of continuous distributions, where 

their probability density functions consists of the monomial Taylor and exponential function. They use discrete 

fractional calculus for showing the existence of delta and nabla distributions and then apply time scales for definition 

of delta and nabla discrete distributions. 

 

2.6 Method 6 

To meet the need of fitting discrete-time reliability and survival datasets, Yari and Tondpour (2018) proposed 

this new method which provides three two-stage composite discretization methods. All of these three methods consist 

of two stages where in the first stage a new continuous random variable is constructed from the underlying continuous 

random variable and in the second stage, a discrete analogue of this new continuous random variable is derived by 

maintaining the same hazard rate function. The three methodologies used are 

 

2.6.1 Methodology I 

Here, in the first stage a continuous random variable X with cumulative distribution function F(x) and support 

[0, ∞) is used to construct a new continuous random variable X1 having hazard rate function 

𝐡𝐗𝟏 𝐱 = 𝐞−𝐅(𝐱), 𝐱 ≥ 𝟎 
 (5) 

 

In the second stage, a discrete analogue Y of X1 is derived by using the following methodology where hazard 

rate function of Y retains the form of hazard rate function of X1. If the continuous random variable X1 has survival 

function SX1 (x) and hazard rate function hX1 (x) then the survival function of the discrete analogue Y is given by 

𝑺𝒀 𝒌 =  𝟏 − 𝒉𝑿𝟏 𝟏   𝟏 − 𝒉𝑿𝟏 𝟐  …  𝟏 − 𝒉𝑿𝟏 𝒌 − 𝟏  ; 𝒌 = 𝟏, 𝟐,…𝒎. 

 

The corresponding probability mass function is therefore 

 
 (6) 

 

If P(Y=k) is such that the total probability is  not  equal  to  one,  then  we shall multiply every P(y) by the 

positive constant w that will ensure the total probability equals to one. Hence the probability mass function takes the 

𝐡𝐗𝟏 𝟎 );    𝐤 = 𝟎 

P(Y = k)= 

𝟎;     𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞. 

( 𝟏 − 𝐡𝐗𝟏 𝟏    𝟏 − 𝐡𝐗𝟏 𝟐  … 𝟏 − 𝐡𝐗𝟏 𝐤 − 𝟏   𝐡𝐗𝟏 𝐤 ;     k = 1,2, . .𝐦 
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form 

 

 

 
(7) 

 
 

 

 

 

Where m can be finite or infinite since hX1(x) is always between zero and one. Now, by using (7) the resulting pmf 

of Y in new methodology is 

 

 

 

 
(8) 

 

 

 

 
2.6.2 Methodology II 

In this method, in the first stage a new continuous random variable X1 having hazard rate function 

 

𝒉𝑿𝟏 𝒙 =
𝟐𝑭𝑿(𝒙)

𝟏 + 𝑭𝑿(𝒙)
 

 
By using continuous random variable X with cumulative distribution function FX(x) and support [0, ∞) is 

constructed. Then in the second stage, a discrete analogue Y of X1  is derived by using (7). Also note that discrete 

distributions obtained in this methodology has increasing hazard rate function. 

 

2.6.3 Methodology III 

Here also in the first stage a continuous random variable X with cumulative distribution function FX(x) and 

Support [0, ∞) is used to construct a new continuous random variable X1 having hazard rate function 

 

𝒉𝑿𝟏 𝒙 =
𝟏

𝒇𝑿(𝒙) + 𝟏
      𝒙 ≥ 𝟎. 

 
Then in the second stage, a discrete analogue Y of X1 is derived by using (7). Here the hazard rate function of Y 

is increasing (decreasing) on (a,b) where 𝑎, 𝑏 ∈ 𝑅+if and only if 𝑓𝑋(𝑥)is decreasing (increasing) on same interval. 

In the first two methods, hazard rate functions of discrete analogues are decreasing and increasing respectively and 

in the third method they can be in-creasing, U shaped or modified unimodal. An important advantage of the method is that 

discrete analogues obtained have monotonic and non-monotonic hazard rate functions. 

 
3. Discrete Analogue of Continuous Distributions 

Usually a continuous distribution is designated by its probability density function, distribution function, 

moments, hazard rate function etc. A discrete analogue of continuous distribution is derived by maintaining one or 

more discriminative property of the continuous distribution. In this section, various discretized distributions derived 

through the various discretization methods are reviewed. 

 

 

𝒘𝒉𝐗𝟏
 𝒚  (𝟏 − 𝒉𝐗𝟏

𝒚−𝟏
𝒊=𝟏 (𝒊));            𝒚 = 𝟏, 𝟐,…𝒎  P(Y=y) = 

𝒘;        𝒚 = 𝟎 

 
𝟎;    𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 

𝒘𝒆−𝑭𝐗(𝒙)  (𝟏 − 𝒆−𝑭𝐗(𝒊)𝒚−𝟏
𝒊=𝟏 );            𝒚 = 𝟏, 𝟐, …𝒎  P(Y=y) 

=== 
= 

𝒘;       𝒚 = 𝟎 

 
𝟎;    𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 
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3.1 Discretized distributions using Method 2 

Here we consider the discrete analogue of normal, Laplace, skew Laplace and generalized exponential distributions. 

 

3.1.1 Discrete Normal Distribution 

The discrete Normal distribution was derived by Kemp (1997) from N (µ, σ) by substituting 

 

𝛌 = 𝐞
−(𝟏−𝟐𝛍)

𝟐𝛔𝟐 𝐚𝐧𝐝 𝐪 = 𝐞
−𝟏

𝛔𝟐  
The pmf is 

 

𝑷 𝑿 = 𝒙 =
𝝀𝒙𝒒

𝒙(𝒙−𝟏)

𝟐

 𝝀𝒋𝒒
𝒋(𝒋−𝟏)

𝟐+∞
𝒋=−∞

, 𝒙 = ⋯ ,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐… 

         (9) 

The plot of Discrete Normal distribution is given in Figure.1. 

 
Figure.1.Discrete Normal distribution 

 
This distribution is characterized by maximum entropy for specified mean and variance and integer support on 

(−∞, +∞).). It can be derived as the distribution of the difference of two related Heine variables. 

 

3.1.2 Discrete Laplace Distribution 

Following Kemp (1997) who defined discrete Normal distribution, a discrete version of Laplace distribution was 

proposed and studied by Inusah and Koszubowski (2006). 

 

Consider the classical Laplace distribution with probability density function 

 

𝒇 𝒙 =
𝟏

𝟐𝝈
𝒆
− 𝒙 

𝝈 ;       𝒙 ∈ 𝑹, 𝝈 > 0 

     (10) 

And distribution function 

𝑭 𝒙 = 𝟏 −
𝒆
𝒙

𝝈

𝟐
. 

 

The survival function and failure rate are  𝐒 𝐱 =
𝐞
−𝐱
𝛔

𝟐
  and r(x )= 

𝟏

𝝈
  respectively. Using method 2 in section 2, 

the discrete version of (10) is given by 
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𝒑− 𝒙 

𝟏 + 𝒑
;     𝐱 < 0 

𝐅 𝐱 = 

𝟏 −
𝒑 𝒙 +𝟏

𝟏 + 𝒑
;𝒙 ≥ 𝟎 

𝐟 𝐱 =
𝟏 − 𝐩

𝟏 + 𝐩
𝐩 𝐱 ;      𝐱 … ,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐 

     (11) 

Where  𝒑 = 𝒆(
−𝟏

𝝈
).  

 

This is the pmf of discrete Laplace distribution. Also this distribution contributes many properties of the 

classical Laplace distribution. The cumulative distribution function of discrete Laplace distribution is 

 

 

 

 

 

 

 
Where [.] is the greatest integer function. 

 

Also the mean, variance, characteristic function, survival function and failure rate are obtained respectively as 

 

𝑴𝒆𝒂𝒏 = 𝟎 

 

𝐕 𝐚𝐫𝐢𝐚𝐧𝐜𝐞 =
𝟐𝐩

(𝟏 − 𝐩)𝟐
 

 

𝐂𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 =
(𝟏 − 𝐩)𝟐

(𝟏 − 𝐞𝐢𝐭𝐩)(𝟏 − 𝐞𝐢𝐭𝐩)
 

 

𝐒𝐮𝐫𝐯𝐢𝐯𝐚𝐥 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 =
𝐩 𝐱 +𝟏

𝟏 + 𝐩
;     𝐱 ≥ 𝟎 

 

𝐅𝐚𝐢𝐥𝐮𝐫𝐞𝐫𝐚𝐭𝐞 =
𝟏 − 𝐩

𝐩
 

It is seen that expressions for the probability density function, distribution function, characteristic function, the 

mean and the variance are obtained in closed form. This discrete model is useful for evaluating the uncertainty in 

droughts, floods, El Ninos, spells etc. Its applications can be extended to civil engineering and insurance industry etc. 

For details see Inusah and Kozubowski (2006). The plot of Discrete Laplace distribution is given in Figure.2. 
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𝐤

𝛔(𝟏 + 𝐤𝟐)
𝐞

𝐱

𝐤𝛔;          𝐱 < 0   

 f(x)= 

 
Figure.2. Discrete Laplace distribution 

 

3.1.3 Skew Laplace Distribution on Integers 

Kozubowski and Inusah (2006) proposed discrete version of skew Laplace distribution. The pdf of the skew 

Laplace distribution with a scale parameter σ>0 and the skewness parameter (see Kotz et al. (2001)) is given by 

 

 

 

 

 
       (12) 

Using method-2, its discrete version takes on an explicit form in terms of the parameters 𝒑 = 𝒆
−𝒌

𝝈  and 𝒒 = 𝒆
−𝟏

𝒌𝝈 , 
𝑝 ∈ (0,1) and 𝑞 ∈ (0,1) as 

 

 

 

 

 

 
         (13) 

The distribution function is 

 

 

 

 

 

 

 

𝐤

𝛔(𝟏 + 𝐤𝟐)
𝐞
−𝐤𝐱

𝛔 ;      𝐱 ≥ 𝟎   

 

(𝟏 − 𝐩)(𝟏 − 𝐪)

𝟏 − 𝐩𝐪
𝐪 𝐱 ; 𝐱 = 𝟎,−𝟏,−𝟐,−𝟑,… 

 
f(x;p,q)= 

(𝟏 − 𝐩)(𝟏 − 𝐪)

𝟏 − 𝐩𝐪
𝐩𝐱; 𝐱 = 𝟎, 𝟏, 𝟐, 𝟑… 

 

(𝟏 − 𝐩)(𝐪− 𝐱 )

𝟏 − 𝐩𝐪
             𝐱 < 0 

 
F(x;p,q)= 

𝟏−
 𝟏 − 𝒒  𝒑|𝒙|+𝟏 

𝟏 − 𝒑𝒒
;    𝐱 ≥ 𝟎 
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While the characteristic function is 

𝛟 𝐭, 𝐩, 𝐪 =
(𝟏 − 𝐩)(𝟏 − 𝐪)

 𝟏 − 𝐞𝐢𝐭𝐩 (𝟏 − 𝐞−𝐢𝐭𝐪)
 

 
The plot of Skew Laplace distribution on integers is given in Figure.3. 

 

 
Figure.3 Skew Laplace distribution on integers 

 
This distribution possesses many properties like infinite divisibility, unimodality, maximum entropy property and 

closure property with respect to geometric compounding of the skew Laplace distribution on the real line. 

 
3.1.4 A Skewed Generalized Discrete Laplace Distribution 

A generalized discrete Laplace distribution which appears as the difference of two independent negative 

binomial variables with common dispersion parameter was proposed by Lekshmi and Sebastian (2014). Its characteristic 

function has the form 

 

𝜙 𝐭, 𝐩, 𝐪 = [
 𝟏 − 𝐩  𝟏 − 𝐪 

 𝟏 − 𝐞𝐢𝐭𝐩  𝟏 − 𝐞−𝐢𝐭𝐪 
]𝛃 

          (14) 

 
When β = 1, it reduces to the characteristic function of discrete skew Laplace distribution. This distribution is 

suitable for modeling currency exchange rates. 

 

3.1.5 Discrete Generalized Exponential Distribution 

Consider the generalized exponential distribution of Gupta & Kundu (1999) having pdf. 

𝐟 𝐱, ∝, 𝛌 = 𝛂𝛌[𝟏 − 𝐞 −𝛌𝐱 ]𝛂−𝟏𝐞(−𝛌𝐱);   𝐱 > 0, 𝛼 > 0, 𝜆 > 0 
          (15) 

With cumulative distribution function 

𝐅 𝐱, 𝛂, 𝛌 = [𝟏 − 𝐞 −𝛌𝐱 ]𝛂  𝐱 > 0 
Survival function is 

 
𝐒 𝐱 = 𝟏 − [𝟏 − 𝐞 −𝛌𝐱 ]𝛂 

Its failure rate is 
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𝑟 𝐱 =
𝛂𝛌[𝟏 − 𝐞 −𝛌𝐱 ]𝛂−𝟏𝐞(−𝛌𝐱)

𝟏 − [𝟏 − 𝐞 −𝛌𝐱 ]𝛂
 

 

This distribution has increasing and decreasing failure rate depending on the value of the shape parameter α. 

When α=1, failure rate is constant. The discrete version of  generalized exponential distribution is proposed by 

Nekoukhou et al. (2012) and its pmf  is 

 

𝒇 𝒚, 𝜶, 𝒑 = 𝒌𝒑𝒚−𝟏(𝟏 − 𝒑𝒚)𝜶−𝟏; 𝟎 < 𝑝 < 1, 𝑝 = 𝒆−𝝀, 𝜶 > 0, 𝑦 ∈ 𝑁                (16) 

 

where 𝒌−𝟏 =    ∝ −𝟏  𝑪𝒋  (−𝟏)𝒋  
𝒑𝒋

𝟏−𝒑(𝟏+𝒋)
∞
𝒋=𝟎 . 

The plot of Discrete Generalized Exponential distribution is given in Figure.4. 

 

Its survival function and failure rate are 

𝐒 𝐲 = 𝐤 (−𝟏)𝐣(∝ −𝟏)𝐂𝐣 

𝐩(𝟏+𝐣)( 𝐲 +𝐣)

𝟏 − 𝐩(𝟏+𝐣)

∞

𝐣=𝟎
 

 

 
Figure .4. Discrete Generalized Exponential Distribution 

 

And 

𝐫 𝐲 =
𝐤𝐩𝐲−𝟏(𝟏 − 𝐩𝐲)𝛂−𝟏

𝐒(𝐲)
 

 
When α = 1, failure rate becomes constant. Also when α = 1, the generalized exponential reduces to exponential 

and the corresponding discrete version becomes geometric. Nekoukhou et al. (2012) also used the discrete generalized 

distribution to model rank frequencies of graphemes in a Slavic language: Slovene. 

 

3.2 Discretized distributions using Method 3 

In this section we made a review on discrete Rayleigh, Normal, Burr and Pareto distributions. 

 

3.2.1 Discrete Rayleigh Distribution 

A Rayleigh random variable X has probability density function given by 
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𝒇 𝒙 =
𝒙

𝝈𝟐 𝒆
−𝒙𝟐

𝟐𝝈𝟐   ; 𝒙 ≥ 𝟎, 𝝈 > 0                              (17) 

 
Also the expressions for distribution function, survival function and hazard function are obtained respectively as 

𝐅 𝐱 = 𝟏 − 𝐞
−𝐱𝟐

𝟐𝛔𝟐   ;  𝐱 ≥ 𝟎, 𝛔 > 0 

𝐒 𝐱 = 𝐞
−𝐱𝟐

𝟐𝛔𝟐    ; 𝐱 ≥ 𝟎, 𝛔 > 0 

𝐫 𝐱 =
𝐱

𝛔𝟐
       ;    𝐱 ≥ 𝟎, 𝛔 > 0 

 
From which it is clear that Rayleigh distribution has the linearly increasing hazard or failure rate which makes 

the distribution a possible model for the lifetimes of components that age rapidly with time. 

Using method-3, the discrete Rayleigh was obtained by Roy (2004) as 

 
𝐏 𝐱 = 𝛉𝐱𝟐 − 𝛉 𝐱+𝟏 𝟐;    𝐱 = 𝟎, 𝟏, 𝟐…                              (18) 

 
The plot of Discrete Rayleigh distribution is given in Figure.5. 

 

 
Figure.5 Discrete Rayleigh Distribution 

 
The survival function is given by 

𝐒 𝐱 = 𝛉𝐱𝟐  𝐰𝐡𝐞𝐫𝐞    𝛉 = 𝐞
−𝟏

𝟐𝛔𝟐 

 
It describes the survival function of the Rayleigh distribution in the continuous set up so that many reliability 

properties remain unchanged. Roy (2004) applied this distribution in the reliability determination of a solid shaft, a well-

known engineering item. 

 
3.2.2 Discrete Normal Distribution 

The normal distribution has a remarkable position in probability theory, and can be used as an approximation 

to many distributions. Applying method-3, Roy (2003) derived discrete normal distribution and its pmf is obtained as 

𝑷 𝒅𝒙 = 𝒙 = 𝚽[
 𝒙+𝟏−𝝁 

𝝈
] − 𝚽[

 𝒙−𝝁 

𝝈
]  =. . . . , −𝟏, 𝟎, 𝟏,… ..                         (19) 
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Where Φ represents the distribution function of the normal deviate Z. For an integer x, the survival function of 

dx is worked out as 

𝑺 𝒙 = 𝟏 −𝚽[
 𝒙 − 𝝁 

𝝈
] 

 
Which is same as that of the normal variate X for all integer valued x. As an application of this distribution 

Roy (2003) considered the problem of reliability determination of a hollow cylinder and elaborated it as an alternative 

to simulation methods. 

 

The plot of Discrete Normal distribution is given in Figure.6. 

 

 
Figure.6. Discrete Normal Distribution 

 

3.2.3 Discrete Burr and Discrete Pareto Distributions 

Consider the Burr distribution as a continuous lifetime model having probability density function 

𝒇 𝒙 =
𝜶𝜷𝒙𝜶−𝟏

(𝟏+𝒙𝜶)𝜷+𝟏 ;   𝜶 > 0, 𝛽 > 0,𝑋 > 0                                (20) 

 
Its survival function is given by 

𝑺 𝒙 = (𝟏 + 𝒙𝜶)−𝜷 = 𝜽𝐥𝐨𝐠⁡(𝟏+𝒙𝜶) 

 
Where  

𝛉 = 𝐞(−𝛃)𝐚𝐧𝐝 𝟎 < 𝜃 < 1 
The failure rate becomes 

 

𝐫 𝐱 =
𝐟(𝐱)

𝐒(𝐱)
=

𝛂𝛃𝐱𝛂−𝟏

𝟏 + 𝐱𝛂
 

The second rate of failure is given by 

 

𝐫∗ 𝐱 = 𝐥𝐨𝐠
𝐒(𝐱)

𝐒(𝐱 + 𝟏)
= −𝛃𝐥𝐨𝐠

𝟏 + 𝐱𝛂

𝟏 + (𝟏 + 𝐱𝛂)
 

 

Using method-3 Krishna and Pundir (2009) studied discrete Burr model having probability mass function given by 
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𝑷 𝒙 = 𝜽𝐥𝐨𝐠 𝟏+ 𝟏+𝒙𝜶  − 𝜽𝐥𝐨𝐠 𝟏+ 𝟏+𝒙𝜶     𝐱 = 𝟎, 𝟏, 𝟐…;                      (21) 

 
The plot of Discrete Burr distribution is given in Figure.7. 

 

 
Figure.7. Discrete Burr Distribution 

 

Survival function is 

 
𝑆 𝒙 = (𝟏 + 𝒙𝜶)−𝜷 = 𝜽𝐥𝐨𝐠⁡(𝟏+𝒙𝜶) 

 

Where 𝛉 = 𝐞(−𝛃)   𝐚𝐧𝐝 𝟎 <  𝜃 < 1 

 
Failure rate is obtained as 

𝒓 𝒙 =
𝑷(𝒙)

𝑺(𝒙)
= 𝟏 − 𝜽𝛟(𝐱) 

Where 𝛟 𝐱 = 𝐥𝐨𝐠⁡[
𝟏+ 𝟏+𝒙𝜶 

𝟏+𝒙𝜶
] 

 
And second rate of failure 

 

𝒓∗ 𝒙 = 𝒍𝒐𝒈
𝑺(𝒙)

𝑺(𝒙 + 𝟏)
= (𝒍𝒐𝒈𝜽)𝐥𝐨𝐠⁡[

𝟏 + 𝒙𝜶

𝟏 +  𝟏 + 𝒙𝜶 
] 

 
S(x) is same for B(α, β) and discrete B(α, θ) at the integer points of X. The expressions for S(x), r(x) and r∗

(
x) 

for  DBD (α, θ)  can  be  directly  obtained from those of continuous Burr (α,β) distribution by putting β=(-logθ).  

Pareto distribution is formulated to deal with the distribution of income over a population. From the Burr and 

discrete Burr distribution for α = 1, we get Pareto and discrete Pareto distribution. 
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The plot of Discrete Pareto distribution is given in Figure.8. 

 

 
Figure.8. Discrete Pareto Distribution 

 

 

3.3 Discretized distributions using Method 5 
In this section, we discuss about nabla discrete Gamma distribution and delta discrete Gamma distribution 

which are derived using method 5. 

 

3.3.1 The Nabla Discrete Gamma Distribution 

The delta and nabla discrete Gamma distributions are introduced by substituting continuous Taylor monomials 

and exponential functions with their corresponding discrete types (on the discrete time scale)in continuous gamma 

distribution. The random variable X has a nabla discrete gamma distribution with parameters (α,β) if its probability 

mass function is given by 

 

𝑷 𝑿 = 𝒙 =
𝒉𝜶−𝟏
∗ (𝒙)𝜷𝜶

𝒆∗𝜷(𝝆 𝒙 , 𝟎)
=

𝒙𝜶−𝟏𝜷𝜶(𝟏 − 𝜷)𝝆(𝒙)

𝚪(𝜶)
;  𝜶 > 0, 0 < 𝛽 < 1;    𝑥 = 𝑵𝟏 

           (22) 

And denote it as Γ∇ 
(α,β) where 

𝐞∗𝛃 𝛒 𝐱 , 𝟎 = (𝟏 − 𝛃)−𝛒(𝐱) 

 
Is the nabla exponential function and 

𝒉𝜶−𝟏
∗  𝒙 =

𝒙𝜶−𝟏

𝚪𝜶
 

Is the nabla Taylor monomial. 

 

The mean, variance and moment generating function of the distribution are given by 

𝐄 𝐗 = 𝛂 𝟏 − 𝛃 𝛃−𝟏 + 𝟏 

𝐕 𝐗 = 𝛂 𝟏 − 𝛃 𝛃−𝟐 

𝐌𝐱 𝐭 = (
𝟏

𝟏 − 𝐭 𝟏 − 𝛃 𝛃−𝟏
)𝛂 

 
Particular cases (a) For α=1, Γ∇ 

(α,β) reduces to one parameter nabla discrete gamma or nabla exponential 

distribution with pmf 

 



Discretizing Continuous Distributions- A Comparative Study 
 

www.ijlrem.org                                                                  21 | Page 

𝑷 𝑿 = 𝒙 = 𝜷(𝟏 − 𝜷)𝒑(𝒙) =;     𝒙 = 𝟏, 𝟐….                                         (23) 

 
Obviously, this is the pmf of geometric distribution. (b)For𝛼 = 𝑛, 𝑛𝜖𝑁 , Γ∇ 

(α,β) reduces to nabla discrete 

Erlang distribution with pmf 

 

𝑷 𝑿 = 𝒙 =  𝒙 − 𝒏 − 𝟐 𝑪𝒙−𝟏𝜷
𝒏 𝟏 + 𝜷 𝝆 𝒙 ;      𝒙 = 𝑵𝟏                                           (24) 

 
If we substitute ρ(x) =x, equations (23) and (24) are given by 

𝐏 𝐗 = 𝐱 = 𝛃(𝟏 − 𝛃)𝐱; 𝐱 = 𝟎, 𝟏, ….    (25) 

And 

𝑷 𝑿 = 𝒙 =  𝒙 + 𝒏 − 𝟏 𝑪𝒙𝜷
𝒏 𝟏 − 𝜷 𝒙;       𝒙 = 𝟎, 𝟏, …                                  (26) 

 
Respectively. It can be seen that these equations are the same geometric and same negative binomial 

distribution. Therefore, we call (25) as nabla geometric distribution and (26) as the nabla negative binomial 

distribution. 

 

The plot of Nabla discrete Gamma distribution is given in Figure.9. 

 

 
Figure.9. Nabla discrete Gamma distribution 

 

3.3.2 The delta discrete Gamma distribution 

The random variable X hasa delta discrete gamma distribution with parameters (α,β) if its probability mass 

function is given by 

 

𝑷 𝑿 = 𝒙 =
𝒉𝜶−𝟏(𝒙)𝜷𝜶

𝒆𝜷(𝝈 𝒙 ,𝟎)
=

𝒙𝜶−𝟏𝜷𝜶

𝚪(𝜶)(𝟏+𝜷)𝝈(𝒙)                                          (27) 

 
Where α>0, β>0, x=Nα−1 and denote it as Γ

∆ 
(α,β) 

𝒉𝜶−𝟏 𝒙 =
𝒙𝜶−𝟏

𝚪(𝜶)
 

 

Is the delta Taylor monomial and 

𝐞𝛃(𝛔 𝐱 , 𝟎 = (𝟏 + 𝛃)𝛔(𝐱) 
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Is the delta exponential function. 

 

Mean, variance and moment generating function of the distribution are given by 

𝐄 𝐗 = 𝛂 𝟏 + 𝛃 𝛃−𝟏 − 𝟏 

𝐕 𝐗 = 𝛂 𝟏 + 𝛃 𝛃−𝟐 

𝐌𝐱(𝐭) = (
𝟏

𝟏 − 𝐭 𝟏 + 𝛃 𝛃−𝟏
)𝛂 

 

The plot of Delta Discrete Gamma distribution is given in Figure.10. 

 

 
Figure.10. Delta Discrete Gamma Distribution 

 

Particular cases (a) For α=1, Γ
∆ 

(α,β) reduces to one parameter delta discrete gamma or delta exponential 

distribution with pmf 

 

𝑷 𝑿 = 𝒙 = 𝜷 𝟏 + 𝜷 −𝝈 𝒙 = (
𝜷

𝟏+𝜷
)(

𝟏

𝟏+𝜷
)𝒙;         𝒙 = 𝟎, 𝟏, 𝟐….                        (28) 

 
Obviously, this is the pmf of geometric distribution.  (b) For α=n, n∈N, Γ

∆ 
(α,β) reduces to delta discrete 

Erlang distribution with pmf 

 

𝑷 𝑿 = 𝒙 = (𝒙 − 𝒏 + 𝟏) = 𝑪𝒙𝜷
𝒏 𝟏 + 𝜷 −𝝈(𝒙);         𝒙 = 𝑵𝒏−𝟏                      (29) 

 
If we substitute σ(x) = x, equations (28) and (29) are given by 

 

𝑷 𝑿 = 𝒙 = (
𝜷

𝟏+𝜷)
)(

𝟏

𝟏+𝜷
)𝒙−𝟏;         𝒙 = 𝟏, 𝟐….                 (30) 

And 

𝑷 𝑿 = 𝒙 =  𝒙 − 𝒏 𝑪𝒙−𝟏(
𝟏

𝟏+𝜷
)𝒏(

𝟏

𝟏+𝜷
)𝒙−𝟏;         𝒙 = 𝒏,𝒏 + 𝟏,…                                  (31) 

 

Respectively. It can be seen that these equations are the same geometric and same negative binomial 

distribution. Therefore, we call (30) as delta geometric distribution and (31) as the delta negative binomial 

distribution. 
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3.4 Discretized distributions using Method 6 

In this section the discrete Exponential and Burr distribution of Type I, II and III are reviewed. Moreover 

discrete gamma and discrete log Cauchy distributions are discussed. 

 

3.4.1 The Discrete Exponential Distribution (Type I) 

If X follows exponential distribution with parameter θ, then the pmf of discrete exponential distribution (Type I) 

obtained by methodology I is 

 

 

 

 

 

 (32) 
 

 

The plot of Discrete Exponential Type I distribution is given in Figure.11. 

 

 
Figure.11.Discrete Exponential Type I Distribution 

 

 

The hazard rate function of Y is decreasing as that of X1 is decreasing. 

 
3.4.2 Discrete Burr XII Distribution (Type I) 

The continuous Burr XII has distribution function given by 

 

𝐅𝐗 𝐱 = 𝟏 −  𝟏 + 𝐱𝐜 −𝐩;      𝐱 > 0 

Its pmf obtained by applying methodology I is 

 

𝑷𝒀 𝒚 = 𝒘𝒆 𝟏+𝒚𝒄 −𝒑−𝟏 𝒊=𝟏
𝒚−𝟏

 𝟏 − 𝒆 𝟏+𝒚𝒄 −𝒑−𝟏 ;   𝒚 = 𝟏, 𝟐, 𝟑… .𝒎 (33) 

 

 
And hazard rate function is 

𝐡𝐘 𝐲 = 𝐞(𝟏+𝐲𝐜)−𝐩−𝟏;    𝐲 = 𝟏, 𝟐, 𝟑… .𝐦 

𝑤;    y = 0 

𝑃(𝑌 = 𝑦) = 

0;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; 

𝑤𝑒−1+𝑒−𝜃𝑦  𝑖=1
𝑦−1

 1 − 𝑒−1+𝑒𝜃𝑖  ;  y=1,2, …m 



Discretizing Continuous Distributions- A Comparative Study 
 

www.ijlrem.org                                                                  24 | Page 

 

The plot of Discrete Exponential Type I distribution is given in Figure.12. 

 

 
Figure.12. Discrete Burr Type I Distribution 

 

3.4.3 Discrete Exponential Distribution (Type II) 

If X follows exponential distribution with parameter θ then the pmf of discrete exponential distribution (Type 

II) obtained by methodology II is 

    
          (34) 

 
And hazard rate function is 

                          𝒉𝒀 𝒚 =
𝟐(𝟏−𝒆−𝝀𝒚)

𝟐−𝒆−𝝀𝒚 ;    𝒚 = 𝟏, 𝟐, 𝟑… .𝒎                      (35) 

    

 
 

The plot of Discrete Exponential Type II distribution is given in Figure.13.  

𝑤;    y = 0 

𝑃(𝑌 = 𝑦) = 

0;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; 

𝑤
2(1−𝑒−𝜃𝑦 )

2−𝑒−𝜃𝑦  𝑖=1
𝑦−1 𝑒−𝜃 𝑖

2−𝑒−𝜃𝑖 ;      y=1,2, …m 
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Figure.13. Discrete Exponential Type II Distribution 

3.4.4 Discrete Burr XII Distribution (Type II) 

If X follows Burr XII distribution, then discrete Burr XII obtained by methodology II has the hazard rate 

function and pmf, respectively, as 

𝐡𝐘 𝐲 =
𝟐(𝟏 − (𝟏 + 𝐲𝐜)−𝐩

𝟐 − (𝟏 + 𝐲𝐜)−𝐩
;    𝐲 = 𝟏, 𝟐, 𝟑… .𝐦 

 

𝑷𝒀 𝒚 = [𝒘
𝟐(𝟏− 𝟏+𝒚𝒄 −𝒑

𝟐− 𝟏+𝒚𝒄 −𝒑 ] 𝒊=𝟏
𝒚−𝟏

[𝒘
 𝟏+𝒊𝒄 −𝒑

𝟐− 𝟏+𝒊𝒄 −𝒑];    𝒚 = 𝟏, 𝟐, 𝟑… .𝒎  (36) 

 

 
The plot of Discrete Burr Type II distribution is given in Figure.14. 

 

 
Figure.14.Discrete Burr Type II Distribution 
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3.4.5 The Discrete Exponential Distribution (Type III) 

If X follows exponential distribution with parameter θ then the pmf of discrete exponential distribution (Type 

III) is obtained by methodology III is 

 

PY 0 =
w

θ + 1
 

 
𝑃𝑌 𝑦 =

𝑤

𝜃𝑒−𝜃𝑦+1
 𝑖=1

𝑦−1 𝜃𝑒−𝜃𝑖

𝜃𝑒−𝜃𝑖+1
;    𝑦 = 1,2,3… .𝑚             (37) 

 
And its hazard rate function is increasing. The plot of Discrete Exponential Type III distribution is given in 

Figure.15. 

 
Figure.15. Discrete Exponential Type III Distribution 

 
3.4.6 The Discrete Gamma Distribution 

If X follows gamma distribution, then the pmf of its discrete version obtained by methodology III is 

 

𝑃𝑌 𝑦 = 𝑤
Γ 𝛼 

𝛽𝛼𝑦𝛼−1𝑒−𝛽𝑦 +Γ 𝛼 
 𝑖=1

𝑦−1
 1 −

Γ 𝛼 

𝛽𝛼 𝑗 𝛼−1𝑒−𝛽𝑖 +Γ 𝛼 
 ; y = 1,2,3… . m   

(38) 

 

The plot of Discrete Gamma distribution is given in Figure.16 
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Figure.16. Discrete Gamma Type III Distribution 

 

Its hazard rate function is U- shaped if α greater than 1. 

 
3.4.7 Discrete Log Cauchy Distribution 

Discrete log Cauchy distribution obtained using methodology III has  pmf  as 

 

𝑃𝑌 𝑦 = 𝑤
𝜋𝑦(𝑙𝑛𝑦 − μ)2 + 𝜎2

𝜎 + 𝜋𝑦(𝑙𝑛𝑦 − μ)2 + 𝜎2
 𝑖=1

𝑦−1
 

𝜎

𝜎 + 𝜋𝑖(𝑙𝑛𝑖 − μ)2 + 𝜎2
 ; y = 1,2,3… . m 

(39) 

And modified unimodal hazard  rate  function 

 

4. Comparison 
In this section we made a comparative study on various discretization methods presented in section 2 are done. In 

method 2, a continuous random variable on R is discretized and the resulting distribution has support on the set of 

integers. This discrete distribution may not always have a compact form be-cause of the presence of the normalizing 

constant.  In contrast with method 2, the discrete analogue obtained by method 3 has a concise form provided the 

survival function of the baseline distribution has a concise form. Also this method preserves the survival function. It 

is to be pointed out in method 4 that if a continuous random variable belongs to the extended exponential family, its 

discrete version belongs to telescopic family consists of discrete lifetime distributions. Method 5 provides a 

discretization technique where the pdf to be discretized consists of the monomial Taylor and exponential function. Instead 

of preserving survival function as in method 2, method 6 preserves the hazard rate function. An important advantage of the 

method is that discrete analogue so obtained has monotonic and non-monotonic hazard rate functions. 

 

5. Summary 
We usually come across situations where lifetimes are suitable to measure as discrete random variable rather 

than continuous one. Geometric and Negative binomial distributions are used to model discrete lifetime data. But the 

need for more distributions and the availability of various discretization methods lead to a number of discrete 

distributions suitable to various situations. A review of various discretization methods is carried out in this study. 

Various discrete models derived by applying these methods are also reviewed. A comparative study of various 

discretization methods is also done. 
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