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1 Introduction, Definitions and Results 

Let f  be a non-constant meromorphic function in the open complex plane C . We denote by ),( frT  

the Nevanlinna characteristic function of f  and by ),( frS  any quantity satisfying )},({=),( frTofrS  

as r  except possibly a set of finite linear measure. 

Let f  and g  be two non-constant meromorphic functions and let a  be a complex number. We denote 

by );( faE  the set of a -points of f , where each point is counted according its multiplicity. We denote by 

);( faE  the reduced form of );( faE . We say that f  and g  share a  CM, provided that 

);(=);( gaEfaE , and we say that f  and g  share a  IM, provided that );(=);( gaEfaE . In addition, 

we say that f  and g  share   CM, if 
f

1
 and 

g

1
 share 0  CM, and we say that f  and g  share   IM, if 

f

1
 and 

g

1
 share 0  IM. 

For standard definitions and notations of the value distribution theory we refer the readers to [2]. 

However we require the following definitions. 

 

Definition 1.1 A meromorphic function )(= zaa  is called a small function of f if ),(=),( frSarT .  

 

Definition 1.2 Let f and g be two non-constant meromorphic functions defined in C . For 

}{, Cba  we denote by )=|;,()(=|;,( bgfarNbgfarN   the counting function (reduced 

counting function) of those a-points of f which are not the b-points of g.  

 

Definition 1.3 Let f and g be two non-constant meromorphic functions defined in C . For 

}{, Cba  we denote by )=|;,()(=|;,( bgfarNbgfarN  the counting function (reduced 

counting function) of those a-points of f which are the b-points of g.  

 

In 1977 L.A.Rubel and C.C.Yang [7] first investigated the uniqueness of entire function sharing certain 

values with their derivatives. They proved the following result. 

 

Theorem A  [7] Let f  be a nonconstant entire function. If );(=);( (1)faEfaE  and 

);(=);( (1)fbEfbE  for two distinct finite complex numbers a  and b  then 
(1)ff  .  

 

In 1979 E.Mues and N.Steinmetz [6] improved theorem A in the following manner. 

 

Theorem B  [6] Let a  and b  be two distinct finite complex numbers and f  be a nonconstant entire 

function. If );(=);( (1)faEfaE  and );(=);( (1)fbEfbE , then 
(1)ff  . 
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In 1986 Jank,Mues and Volkman [3] considered the problem of sharing a single value by the derivatives 

of an entire function. Their result may be stated as follows. 

Theorem C  [3] Let f be a non-constant entire function and 0)=( a  be a finite complex number. If 

);(=);( (1)faEfaE  and );();( (2)faEfaE  , then 
(1)ff  .  

 

In 2002 Chang and Fang [1] extended Theorem C and proved the following result. 

 

Theorem D  [1] Let f be a non-constant entire function. If );(=);( (1)fzEfzE  and 

);();( (2)(1) fzEfzE  , then 
(1)ff  .  

 

In this paper, we will improve Theorem D by increasing the power of the sharing function z as well as 

relaxing the condition by considering one sided inclusion );();( (1)faEfaE   instead of 

);(=);( (1)fzEfzE  in Theorem D .  

We give an example below to show that the Theorem 1.1 is not true if we consider 
2=)( zza  that is the 

Theorem 1.1 is not true for general second degree polynomial )(za  .So 1=)( 2 zza  is necessary in 

Theorem 1.1.  

 

Example 1.1 Let 442=)( 2  zzzf  and 
2=)( zza , then 

22 2)(=44=)()(  zzzzazf  and 
22(1) 2)(=44=)()(  zzzzazf  and 

))(2(2=4=)()( 2(2) zzzzazf  , which means );();( (1)faEfaE   and 

);();( (2)(1) faEfaE  , but }{= zAexpf   or },
2

{5)4(1)(= 22

Bi

z
expzzzf


  where A is a 

non-zero constant and 1=2B .  

 

We now state the main result of the paper. 

 

Theorem 1.1  Let f be a non-constant entire function and 1=)( 2 zza . If );();( (1)faEfaE   

and );();( (2)(1) faEfaE  , then either }{= zAexpf  or }
2

{5)4(1)(= 22

Bi

z
expzzzf


  

where A is a non-zero constant and 1=2B .  

  

Corollary 1.1  If in Theorem 1.1 we assume );(=);( (1)faEfaE  , then }{= zAexpf , where 

A 0)=(   is a constant.  

 

2 Lemmas 
 In this section we present a very important lemma which helps us to prove the theorem. 

 

Lemma 2.1 [4] Let f  be a transcendental entire function and )0,)((= zaa  be a non-constant 

small function of f such that );();( (1)faEfaE   and );();( (2)(1) faEfaE  . Then }{= zAexpf  if 

and only if ),(=)
1

,( frS
af

rm


, where A is a non-zero constant. 

 

3 Proof of the theorem 

Proof of Thorem \reft1. First we suppose that f  is a transcendental entire function. 

Let  
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)(

))(())((
=

(1)(1)(2)(2)(2)(1)

af

afaaafaa




  (1) 

 where 1= 2 za . 

If 0 . Then  

 
12

1
=

2

2
2

2

(1)

(2)









zz

z

zf

f
 

 i.e., 

 
12

22
1=

2

2
2(1)

(2)










zz

z

zf

f
 

 This gives on integration   

 Azzzzf log1)2(log=)2(log 2(1)   (2) 

 i.e., 

 }{1)2(2= 2(1) zexpzzAzf   

 i.e.,  

 ,}{5)4(= 22 BzexpzzAzf   (3) 

 and 

 }.{1)(2= 2(2) zexpzAf   

 

Where 0)=( A  and B are constants. 

Let 0z  be a solution of 0=)()( zazf  . 

Then   

 0,=1}{5)4(=1)()( 00

2

0

2

00  BzexpzzAzzf  (4) 

   

 0,=1)2(}{1)2(=1)()( 0

2

000

2

0

2

00

(1)  zzzexpzzAzzf  (5) 

 and   

 0,=)(1}{1)(=1)()( 2

00

2

0

2

00

(2) zzexpzAzzf   (6) 

 

From (5) we get 

 0=1)}{1)(2( 00

2

0  zAexpzz  

 i.e., 1=}{ 0zAexp  or 1=0z . 

If 1=0z  then the equation (2) does not exist, so 1=0 z . 

If 1=}{ 0zAexp  then from the equation (4) we get,  

 0=44 0

2

0 Bzz   

 

i.e., iBz 2=0 . That is 0=1)()( 2  zzf  has two solutions iBz 2=0 . Also from (3) 

0=)()( 2 Bzzf   implies 0=5)4}({ 2  zzzAexp ,since 0=}{ zAexp  then iz 2=  . Hence 

0=)()( 2 Bzzf   has two solutions iz 2= . We conclude that 1= B  i.e., 1=B  and 

}
2

1
{=

i
expA


. 

 
Putting the value of A and B in (3) we get,  
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 }.
2

{5)4(1=)( 22

i

z
expzzzzf


  

Now we suppose that 0 .Then   

 )])(())([(
1 (1)(1)(2)(2)(2)(1) afaaafaaaf 


 (7) 

 where 1= 2 za . 

 

And so   

 )](
2

)()
1

()[1()]()()
1

([1 (2)(1)(1)'(1)(1)
(1)

(2)' aaaaaaaf
a

aa 


 

 


(2)(3)
(1)(1)(2)'(1) )()]()

1
(

1
)[(

af
aaafaa


  (8) 

Let  

 0)(
2

)()
1

(1= (2)(1)(1)'  aaaa


 

i.e.,  

 02)(2
2

1)2()
1

(1 2'  zzz


 (9) 

i.e.,  

 1)2('1)4( 22  zzz   (10) 

  
We claim that   is not transcendental. 

Indeed, if   is transcendental,then from (10) we get  

 ),(),(=),(  rNrmrT   

 )log(),(
'

rOrm 



 

 ).,(= rS  

  

Thus we get a contradiction: ),(=),(  rSrT .  

Hence   is a rational function. Solving the differential equation (10) we get, 

)(=
31)(

1)3(
=

3

4

saybaz
kz

z





  where 0)=( a ,b and k are constants. 

Put baz =  in (10) and equating the coefficients of 
2z , z  and constant term both the sides we get, 

aaa =42   i.e., 0=a  or 3= a  but 0=a  so 3= a  and 3=b . Hence 1)3(=  z . 

If we put 1)3(=  z  in (1) we get,  

 )21)((2)1)(2(=1)1)(3( (1)2(2)22 zfzfzzzfz   

 

i.e., 

 0=1)}3()21)((2)1)(1){(( 2(1)(2)  zfzfzfzz  

 

i.e.,   

 0=1)3()21)((2)1)((1= 2(1)(2)  zfzfzfzorz  (11) 
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If  1=z    then from (9) we get 01 , which is a contradiction. 

Now differentiating thrice of the equation (11) we get 

 

 
1

1
1=

1

2
=

(4)

(5)








zz

z

f

f
 

 
On integration we obtain 

 ,
1

}{.
=(4)

z

zexpc
f  

 

where 0=c  is a constant.This is not possible because f  is an entire function. 

Therefore 0  and so from (??) we obtain  

 ..
1

)(

))()
1

(
1

(

)(

)()
1

(1
1

(1)

(2)(3)

(1)

(1)(2)'

(1)

(1)
(2)'

(1) af

af

af

af

aa

a
aa

af 
















 


 

 
Hence   

 ),(=)
1

,(
(1)

frS
af

rm


 (12) 

because ),(=),( frSrT   and f  is transcendental. 

By the hypotheses we see that 11= andz  are only the possible multiple zero of af (1)
. 

So, 

 ).,(=)log(),0;()=|;,( (1) frSrOrNaffarN    

 

Also since );();( (1)faEfaE   then   

 

).,();,(=)log()=|;,();,(=);,( (1)(1) frSfarNrOaffarNfarNfarN   (13) 

  
From (7) we get,  

 )]().[(= (2)

(1)(1)

(2)(2)
(1)

(1)(1)

aa
af

af
aa

af
af 










 

Hence, 

 ),(),(),( (1)(1) frSafrmfrm   

 ),(),( (1) frSfrm   

 ).,(),(= (1) frSfrT   

 

Since f  is an entire function we get,   

 ),(),(),(=),( (1) frSfrTfrmfrT   (14) 

  

Also,   

 ),(),(=),(),(),(=),(
(1)

(1)(1) frSfrT
f

f
rmfrmfrmfrT   (15) 

Therefore   

 ).,(),(=),( (1) frSfrTfrT   (16) 
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From (12),(13) and (16) we get  

 ),()
1

,(),(=)
1

,( frS
af

rNfrT
af

rm 





 

 ),()
1

,(),(= (1) frS
af

rNfrT 


  

 ),()
1

,()
1

,(=
(1)

frS
af

rN
af

rN 





 

 ).,(= frS  

 

Therefore by Lemma 2.1 we get }{= zAexpf . 

Now we prove that f  can not be a polynomial. We suppose that f  is a polynomial and consider the 

following cases.  

 

Case 1. Let BAzf = , where 0)=( A  and B are constants, and 1=)( 2 zza  then if 

0z  is a root of 0=1)()( 2  zzf , then by hypotheses 0z  is also a root of 0=1)()( 2(1)  zzf  and 

0=1)()( 2(2)  zzf . Hence 0=1)( 2

0  zA  and 0=1)(0 2

0  z  i.e., 0=1= 2

0 zA  , which is a 

contradiction.  

Case 2. Let CBzAzf 2= , where 0)=( A  , B and C are constants. If 0=)()( zazf   has two 

distinct roots 1z  and 2z  , then by hypotheses 1z  and 2z  are also roots of 0=1)()( 2(1)  zzf  and 

0=1)()( 2(2)  zzf . That is 1z  and 2z  are roots of 0=1)(2 2  zBAz  and so Azz 2=21  . 

Also 1z  and 2z  are roots of 0=1)(2 2  zA  and so 0=21 zz  . Hence 0=2A  i.e., 0=A , a 

contradiction. 

So 0=)()( zazf   has only one double root 0z .Then by hypotheses 0z  is also a root of 

0=)()((1) zazf   and 0=)()((2) zazf  . So,   

 0=12

00

2

0  zCBzAz  (17) 

 

 0=12 2

00  zBAz  (18) 

 

 0=22 00 zBAz   (19) 

 

 0=12 2

0  zA  (20) 

  

Solving these four equations we obtain 0=1,= BA  and 1=C . So, 1=)( 2 zzf  

i.e., )()( zazf  . Since );();( (1)faEfaE  , we arrive at a contradiction.  

 

Case 3. Let f  be a polynomial of degree 3. Suppose DCzBzAzf  23= , where 0)=( A  , B,C 

and D are constants.  

 

Subcase 3.1. First we suppose that 0=)()( zazf   has three distinct roots. Since 

);();( (1)faEfaE   so these three roots are also the roots of the equation 0=)()((1) zazf   i.e., of the 

equation 0=1)(23 22  zCBzAz , which is possible when )()((1) zazf  . Since 
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),(),( (2)(1) faEfaE  , we arrive at a contradiction.  

 

Subcase 3.2. Now we suppose that 0=)()( zazf   has one double root and one simple root. Let 1z  

be a double root and 2z  be a simple root of the equation 0=)()( zazf  . Then by hypotheses,   

 0=12

11

2

1

3

1  zDCzBzAz  (21) 

  

 0=123 2

11

2

1  zCBzAz  (22) 

 

 0=126 2

11  zBAz  (23) 

  

 0=223 11

2

1 zCBzAz   (24) 

  

Solving these four equations we obtain, AB 31=   , AC 3=  and AD 1=  . And so 

1)(1)(=)( 23  zzAzf . Hence the equation 
31)(=)()(  zAzazf  has only one root of 

multiplicity three which contradicts our assumption that 0=)()( zazf   has one double root and one simple 

root.  

Subcase 3.3. Now we suppose that 0=)()( zazf   has only one root of multiplicity three. Let 1z  be 

the root of multiplicity three of the equation 0=)()( zazf  . Then by hypotheses, we obtain the equations 

(21)-(24) and the equation   

 0=226 1  BAz  (25) 

Solving the equations (21)-(24) we obtain, 
31)(=)()(  zAzazf . But from (23) and (25) we get 

0=12

1 z  i.e.,  1=1z  and 1 , so -1 also a root of the equation 0=)()((2) zazf   i.e., of the equation 

0=121)(6 2  zzA , if we put 1= z  of this equation we get 0=A , which is a contradiction.  

  

Case 4. Let f  be a polynomial of degree 4)(d . If nzzz ,...,, 21  are the roots of the equation 

0=)()( zazf  . Then we have   

 n
nzzzzzzAzzf


)...()()(1)(=)( 2

2
1

1

2   (26) 

 

 )()...()()(1)(=)( 2
2

1
1

2(1) zPzzzzzzBzzf n
n


  (27) 

 

 )()()...()()(1)(=)( 2
2

1
1

2(2) zQzPzzzzzzCzzf n
n


  (28) 

  

where )(zP , )(zQ  are polynomials and A,B,C are three non-zero constant, and }{ j , }{ j , }{ j  

(j=1,2,...n) are positive integers satisfying 

  

 1,=...,=... 2121  ddegPd nn   

 2.=...21  ddegQdegPand n  (29) 

Differentiating equation (26) and equate with (27) we get,   

 )()(1)()()(2
=

2

=

1

1=

zPzzBzzzzzAz j

j

n

ij

j

j

ij

i
ii

n

i


  




 (30) 

If 2j . Then by (30) we get 1=jz . With out loss of generality, we assume that 1=j . Then by (26),(27) 

and (??) we obtain, 
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 ))...((1)(1)(=)( 2
12

nzzzzzAzzf 


 (31) 

 

 ))...((1)(1)(=)( 2

1
12(1)

nzzzzzBzzf 


 (32) 

Differentiating twice of the equation (26) and equating with the equation (28) we get ,   

 
11

1=,=

2

1=

)()(2)()1)((2





  j

j
i

iji

n

ji

j

j

ij

i
iii

n

i

zzzzAzzzzA


  

 )()()(1)(=)(
=

2

,=

zQzPzzCzzz i
i

n

ii

k
k

jik


 



 (33) 

 

If any 3i  then from (??) we obtain, 1=2 2 iz  i.e., 11= andzi . With out loss of generality 

we put 1=1 z  and 31  . Then 1  is a root of 0=1)()( 2  zzf  but 2=1)((1) f  i.e., 1  is not 

a root of the equation 0=1)()( 2(1)  zzf . Thus we see that ),(1 faE  but ),(1 (1)faE  which 

contradicts the hypothesis );();( (1)faEfaE  . Thus any i  not greater or equal to 3. Thus 2=1 . 

Hence by (32) we get   

 ))...(1)((1)(=)( 2

2(1)

nzzzzzBzzf   

  

and   

 ))...(1)((1)(=)( 2

2(2)

nzzzzzCzzf   

Thus we arrive at a contradiction: 
(2)(1) = degfdegf . This proves the theorem.  

 
Proof of Corollary 1.1.. If 

},
2

{5)4(1)(= 22

Bi

z
expzzzf


  where 1=2B  . Then 

}
2

{
2

5)4(
}

2
{4)(22=

2
(1)

Bi

z
exp

Bi

zz

Bi

z
expzzf







  we clearly see that );( faE  contains 

only two points but );( (1)faE  contains infinitely many points. This is a contradiction of the hypothesis 

);(=);( (1)faEfaE . Hence by Theorem 1.1 we get }{= zAexpf  . 
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