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Abstract: We prove a uniqueness theorem for an entire function, which share a function with their first and
second order derivatives. We improve some existing results.
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1 Introduction, Definitions and Results
Let f be a non-constant meromorphic function in the open complex plane C . We denote by T (r, f)

the Nevanlinna characteristic function of f and by S(r, f) any quantity satisfying S(r, f) =o{T (r, f)}
as I — oo except possibly a set of finite linear measure.
Let f and g be two non-constant meromorphic functions and let a be a complex number. We denote

by E(a; f) the set of a-points of f , where each point is counted according its multiplicity. We denote by
E(a;f) the reduced form of E(a;f). We say that f and ¢ share @ CM, provided that
E(a; f)=E(a;g),and wesaythat f and g share a IM, provided that E (a; f) = E(a;g) . In addition,

1 1
we say that f and g share co CM, if T and — share 0 CM, and we say that f and g share oo IM, if
g

1 1
— and — share 0 IM.
f g

For standard definitions and notations of the value distribution theory we refer the readers to [2].
However we require the following definitions.

Definition 1.1 A meromorphic function @ = a(z) is called a small function of fif T (r,a) = S(r, f).

Definition 1.2 Let f and g be two non-constant meromorphic functions defined in C. For
a,b e CuU{o} we denote by N(r,a;f|g#Db)(N(r,a;f|g#b) the counting function (reduced
counting function) of those a-points of f which are not the b-points of g.

Definition 1.3 Let f and g be two non-constant meromorphic functions defined in C. For

a,b e Cu{o} we denote by N(r,a;f|g=b)(N(r,a;f|g=Db) the counting function (reduced
counting function) of those a-points of f which are the b-points of g.

In 1977 L.A.Rubel and C.C.Yang [7] first investigated the uniqueness of entire function sharing certain
values with their derivatives. They proved the following result.

Theorem A [7] Let f be a nonconstant entire function. If E(a;f)=E(a; f®) and
E(b; f) = E(b; ™) for two distinct finite complex numbers & and b then f = f®.

In 1979 E.Mues and N.Steinmetz [6] improved theorem A in the following manner.

Theorem B [6] Let @ and b be two distinct finite complex numbers and f be a nonconstant entire
function. If E(a; f)=E(a; f®) and E(b; f) = E(b; f)  then f = f®.
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In 1986 Jank,Mues and Volkman [3] considered the problem of sharing a single value by the derivatives
of an entire function. Their result may be stated as follows.

Theorem C [3] Let f be a non-constant entire function and a(# 0) be a finite complex number. If
E(a;f)=E(a;f®) and E(a; f)c E(a; f?), then f =",

In 2002 Chang and Fang [1] extended Theorem C and proved the following result.

Theorem D [1] Let f be a non-constant entire function. If E (z; f) = E(z; f ) and
E(z; fP)cE(z; f?), then f =1,

In this paper, we will improve Theorem D by increasing the power of the sharing function z as well as
relaxing the condition by considering one sided inclusion E(a;f)c E(a;f®) instead of

E(z; f)=E(z; ™) inTheoremD .
We give an example below to show that the Theorem 1.1 is not true if we consider a(z) = z° that is the

Theorem 1.1 is not true for general second degree polynomial a(z) .So a(z) =z’ +1 is necessary in
Theorem 1.1.

Example 1.1 Let f(z)=2z°—4z+4 and a(z) = z°, then
f(2)-a(z)=22-4z+4=(2-2)"and TP (2)-a(z)=4z-4-2>=—(2-2)% and
f@(2)-a(z)=4-2?=(2-12)(2+2), which means E(a; f) c E(a; f ") and

E(a; fY)cE(a; f?),but f# Aexp{z}or f # (z°+1)+ (2 —4z+5)exp{2 ZB_}, where Ais a
+Bi

2
non-zero constant and B =1.

We now state the main result of the paper.

Theorem 1.1 Let f be a non-constant entire function and a(z) = z> +1.1f E(a; f) c E(a; f ™)

}

and E(a; @) c E(a; f?), theneither f = Aexp{z} or f = (2?2 +1)+(z* -4z +5)exp{2 ZB'
+Bi

. 2
where A is a non-zero constantand B° =1.

Corollary 1.1 If in Theorem 1.1 we assume E (a; f) = E(a; ™) ,then f = Aexp{z}, where
A(# 0) isa constant.

2 Lemmas
In this section we present a very important lemma which helps us to prove the theorem.

Lemma 2.1 [4] Let f be a transcendental entire function and a = a(z)(# 0,0) be a non-constant

small function of f such that E(a; f) c E(a; f™) and E(a; f ) c E(a; f?). Then f = Aexp{z} if

) 1
and only if m(r,
f-a

) = S(r, f), where A is a non-zero constant.

3 Proof of the theorem
Proof of Thorem \reft1. First we suppose that f is a transcendental entire function.
Let
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v = (a_ a(l))( f@_ a(Z)) _ (a _ a(Z))(f ™ _ a(l))

1
(f—a) @)
where a =z +1.
If w =0. Then
f@-2 2 -1
fO_27 z2-2z+1
ie.,
f@_2 L 222
fW_2z 72 -27+1
This gives on integration
log(f® —22) = z+log(z® -2z +1) +log A @
ie.,
f0 =22+ A(z* -2z +1)exp{z}
ie.,
f =22+ A(z* -4z +5)exp{z}+B, ©)
and
f@ =2+ A(z® -Dexp{z}.
Where A(# 0) and B are constants.
Let Z, be asolution of f(z)—a(z)=0.
Then
f(z,) - (22 +1) = A(zZ — 4z, +5)exp{z,}+B-1=0, (@)
f W (z,)— (22 +1) = Az, -2z, +1)exp{z,}— (22 — 2z, +1) =0, (5)
and
£ (2) - (22 +1) = A2 ~Dexp{zo}+ (1-22) =0, ©

From (5) we get
(z¢ -2z, +1)(Aexp{z,}-1) =0
i.e., Aexp{z,}=1or z, =1.
If Z, =1 then the equation (2) does not exist, so Z, #1.
If Aexp{z,} =1 then from the equation (4) we get,
2;-47,+4+B=0

ie,z,= 2++/Bi. That is f(z)—(z*+1) =0 has two solutions Z, = 2++/Bi. Also from (3)
f(2)—(z°+B)=0 implies Aexp{z}(z°—4z+5) =0 since Aexp{z}#0 then z=2%i . Hence
f(z2)—(z>+B)=0 has two solutions Z=2%i. We conclude that VB =41 ie,B=1 and

1
A=exp{—1}.
p{Zii}

Putting the value of A and B in (3) we get,
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f(2)= 2% +1+ (22 - 42 +5)exp{§}.
|
Now we suppose that i # 0.Then

f-a= 1[(a—a(1))(f @ _a(Z)) _(a_a(Z))(f @ _a(l))] @)
74

where a=z2+1.

And so
1, oy, a1 e @ 1, Wy, 2 (A _ A
[1+(—) (@-a)+—](f¥ -a)=(a" —-a)[1+(—) (a-a")+—(a" —a*’)]
% % 7 %
@ _ 4@
+@® —a)[ L~ (1) )(fP—a®)— (¥ —a) 2~ @
7N %
Let
a1y Wy, 2 (A A@y_
A=1+(—)(a—-a"’)+—(@"-a"“)=0
| y 7
l.e.,
1., 2
1+(—) (z°-2z+1)+—(2z2-2)=0 9)
| 7 y
l.e.,
wi+d(z-y =y'(z°-22+1) (10)

We claim that  is not transcendental.
Indeed, if i is transcendental,then from (10) we get

T(r,y)=m(r,y)+N(r,y)
< m(r,ﬂ) +0(logr)

174
=S(r,y).

Thus we get a contradiction: T (r,y) = S(r,y).
Hence  is a rational function. Solving the differential equation (10) we get,

_ —3(z-1)°
T
(z-1)"+3k
Put ¥ = az+b in (10) and equating the coefficients of 2%, 7 and constant term both the sides we get,
a’+4a=aie,a=0ora=-3butaz0soa=-3andb=3. Hence v =-3(z-1).
If we put i = —=3(z—1) in (1) we get,
“3(z-D(f -2 -1 =(2*-2z+1)(f?-2) - (2> -1)(f P -22)

=az+b(say) where a(# 0) ,b and k are constants.

Z-D{(z-1)(f?-2)—(z+1)(f P -22) +3(f —z2-1)}=0

z=1or (z-1)(f?-2)—(z+1)(f® -22)+3(f -z°-1)=0 (11)
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If z=1 thenfrom (9) we get 1=0, which is a contradiction.

Now differentiating thrice of the equation (11) we get

& z-2 1
f@ 71 z-1

On integration we obtain
£ = c.exp{z}
z-1

where € # 0 is a constant. This is not possible because f is an entire function.
Therefore A # 0 and so from (??) we obtain

1. a® 1 1.
1 1+(;) (a—a(z))+7 (;—(;) )(f@—al) 1 §fO_50
0 3~ @ -aa  A(P-a) Ay f0_a
Hence
1

because T (r,y) = S(r, f) and f istranscendental.
By the hypotheses we see that Z =1and —1 are only the possible multiple zero of f W_a.

So,
N(r,a; f@| f £a)<N(r,0;p)+0O(logr) = S(r, f).

Also since E (a; f) < E(a; f™) then

N(r,a; f®)=N(r,a; f)+N(r,a; f®| f £a)+O(logr) = N(r,a; f)+S(r, ). (13)
From (7) we get,
FO_ @ FO _ 4@
f :a+T[(a—a(”).W—(a—a(2’)]

Hence,
m(r, f)<m(r, f® —a®)+S(r, f)

<m(r, fP)+S(r, f)
=T(r, fO)+5(r, f).

Since f isan entire function we get,

T(r, f)=m(r, {)<T(r, f)+5S(r, f) (14)
Also,
f(l)
T(r, D) =m(r, fP)<m(r, f)+m(r,T) =T(r, f)+S(r, f) (15)
Therefore
T(r, f)=T(r, f(l))+S(r, f). (16)
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From (12),(13) and (16) we get
m(r,i) =T(r, f)—N(r,L)+S(r, f)
f-a f

—a
=T(r, f®)=N(r, ! )+S(r, T)
f-a
1 1
= N(r,fT_a)—N(l’, f _a)+8(r, f)

=S(r, f).

Therefore by Lemma 2.1 we get T = Aexp{z}.

Now we prove that f can not be a polynomial. We suppose that f is a polynomial and consider the
following cases.

Case 1. Let f = Az+B, where A(#0) and B are constants, and a(z) = z>+1 then if
Z, is a root of f(z)—(z®+1) =0, then by hypotheses z, is also a root of f®(z)—(z*+1) =0 and
f@(z)—(z°+1)=0. Hence A—(z.+1)=0 and 0—(z;+1)=0 ie,A=2.+1=0 , which is a
contradiction.

Case 2. Let f = Az>+Bz+C, where A(Z0) ,Band C are constants. If f(z)—a(z)=0 has two

distinct roots z, and Z, , then by hypotheses z, and z, are also roots of f®(z)—(z*+1)=0 and
f@(z)—(z°+1)=0. Thatis z, and z, are roots of 2Az +B—(z*+1) =0 and so z,+2, = 2A.

Also Z, and Z, are roots of 2A—(z°+1)=0 and so z,+2,=0. Hence 2A=0 ie,A=0, a
contradiction.
So f(z)—a(z)=0 has only one double root Zz,.Then by hypotheses z, is also a root of

fP(z)-a(z)=0 and f?(z)—a(z)=0.so,
Az +Bz,+C—-2.-1=0

2A7,+B-22-1=0
2A7,+B-22,=0
2A-72-1=0

Solving these four equations we obtain A=1,B=0 and C=1. So, f(z)=2z°+1
ie., f(z)=a(z).sSince E(a; f) < E(a; f™), we arrive at a contradiction.

Case 3. Let f be a polynomial of degree 3. Suppose f = Az®+Bz?+Cz+ D, where A(Z0) ,B,C
and D are constants.

Subcase 3.1. First we suppose that f(z)—a(z)=0 has three distinct roots. Since
E(a; f) c E(a; f ) so these three roots are also the roots of the equation f ' (z)—a(z) =0 i.e., of the
equation 3Az?+2Bz+C—(z°+1) =0, which is possible when f®(z)=a(z). Since

www.ijlrem.org 6 | Page

(A7)

(18)

(19)

(20)



International Journal of Latest Research in Engineering and Management (IJLREM)
ISSN: 2456-0766
www.ijlrem.org I Volume 06 Issue 06 I June 2022 | PP 01-08

E(a, f®)c E(a, f®), we arrive at a contradiction.

Subcase 3.2. Now we suppose that f (z)—a(z) =0 has one double root and one simple root. Let Z;
be a double root and Z, be a simple root of the equation f (z) —a(z) = 0. Then by hypotheses,
Az} +Bz} +Cz,+D-2/-1=0

3Az2+2Bz,+C 22 -1=0
6Az,+2B—22-1=0
3Az} +2Bz,+C—-22,=0

Solving these four equations we obtain, B=1-3A , C=3A and D=1-A . And so
f(z)= A(z-1)°+(z° +1). Hence the equation f(z)—a(z)= A(z-1)> has only one root of
multiplicity three which contradicts our assumption that f (z) —a(z) = 0 has one double root and one simple
root.

Subcase 3.3. Now we suppose that f(z)—a(z) =0 has only one root of multiplicity three. Let Z, be

the root of multiplicity three of the equation f (z)—a(z) = 0. Then by hypotheses, we obtain the equations
(21)-(24) and the equation
6Az, +2B-2=0
Solving the equations (21)-(24) we obtain, f(z)—a(z) = A(z—1). But from (23) and (25) we get
22-1=0ie, 2z, =1 and —1, so -1 also a root of the equation f®(z)—a(z) =0 i.e., of the equation
6A(z-1)+2—-2°-1=0,ifwe put Z=—1 of this equation we get A =0, which is a contradiction.

Case 4. Let f be a polynomial of degree d(=4). If z,,2,,...,Z, are the roots of the equation
f(z)—a(z) =0. Then we have

f(2)=(2*+)+A(z-2)"(z-2,)2..(z-2,)"
fO(2)=(22+1) +B(z-2)"(z-2,)"..(z—2,)" P(2)
fP@2)=(*+1)+C(z-2)*(z2-2,)%...(z—2,) " P(2)Q(2)

where P(z),Q(z) are polynomials and A,B,C are three non-zero constant, and {;}, {8}, {r;}
(j=1,2,...n) are positive integers satisfying

o, +a,+..+a,=d,8,+ 6, +..+ [, +degP =d -1,
and y, +y,+...+y,+degP +degQ =d - 2.
Differentiating equation (26) and equate with (27) we get,
. a; -1 a; n B
21+ AY o, (z-2)" [ [(z—2)) ' = (2 +1D)+B[ J(z-2,)) ' P(2)
i=1 j#i j=i
If o; >2. Then by (30) we get z; =1. With out loss of generality, we assume that j =1. Then by (26),(27)
and (??) we obtain,
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f(2)=(2*+)+A(z-1)"(z2~-2,)..(z-2,) (31)

fD(2)= (22 +1) +B(z-)" " (z-2,)..(z-2,) (32)
Differentiating twice of the equation (26) and equating with the equation (28) we get ,
2+ AY (e -1z -2)" [ [(2-2) +2AY oy, (2-2) (2 -2,)T
i=1 j#i ij=l
[1@-2)% = (2 +1)+C] J(z-2)"P(2)Q(2) (33)
ki, j i=i
If any ¢; =3 then from (??) we obtain, 2 = Zi2 +1 ie, z; =1and —1. With out loss of generality
weput zZ, =1 and ¢, >3. Then —1 isarootof f(z)—(z*+1)=0 but f¥(~1)=-2 ie, —1 is not
a root of the equation ™ (z)—(z*+1) =0. Thus we see that —1€ E(a, f) but —1¢ E(a, f ™) which

contradicts the hypothesis E (a; f) = E(a; f ). Thus any @, not greater or equal to 3. Thus o, = 2.
Hence by (32) we get
fO@2)=(*+)+B(z-1)(z-12,)..(z—z,)

and
fP@2)=(2°+1)+C(z-1)(z-12,)..(z~z,)

Thus we arrive at a contradiction: degf @ = degf ® . This proves the theorem.

Proof of Corollary 1.1.. If

f =(2%+1)+(z° -4z +5)expf . 3, where B*=1 . Then
2+Bi
2 _
f® =274 (22 -4)exp{ : 3+ (z 42?—5) exp{ : -} we clearly see that E(a; f) contains
2+ Bi 2+ Bi 2+ Bi

only two points but E(a; f(l)) contains infinitely many points. This is a contradiction of the hypothesis
E(a; f)=E(a; f ™). Hence by Theorem 1.1 we get f = Aexp{z} .
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