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Abstract: In this paper, we construct a new algorithm combining the Barzilai-Borwein step with the AMSgrad 

algorithm for solving convolutional neural network models. The convergence analysis of the new method is 

presented. Numerical experiments on convolutional neural network show the efficiency of the new algorithm. 
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1. Introduction 

With the development of machine learning and deep learning, deep neural network (DNN) [1] plays an 

important role in solving natural language processing (NLP), computer vision (CV) [2][3], target detection, and 

other problems. And its variants also can deal with many practical problems, for example, convolutional neural 

networks (CNNs) have been widely used in image classification, and VGG, GooleNet, and the residual neural 

network ResNet [2] models have improved the accuracy rate of image recognition, Neural Networks (RNNs) 

and its improved model Long Short Term Memory Neural Networks (LSTMs) have solved many engineering 

technical problems in natural language processing and achieved ultra-high accuracy levels. 

On the other hand, with the development of neural networks, the corresponding parameters are growing 

dramatically. Then it becomes difficult to train complex neural network models and find the parameter values 

that approximate the optimal solutions. Therefore, it is important to find a suitable iterative algorithm to 

minimize the loss function and find the optimal parameter values. 

Among the algorithms for convolutional neural network models, the gradient-type algorithmsare the 

popular way because they only need the first-order information and can parallelized easily. Stochastic gradient 

descent (SGD) [4-7] uses a stochastic gradient as the search direction, andit saves computational cost and 

improves iteration efficiency. But the traditional stochastic gradient descent (SGD) optimization  is very 

sensitive under many conditions, it can lead to the termination with low precision. Many improved methods 

have been proposed for this kind problem, such as the SGD algorithm for momentum acceleration [8] and 

Newton's method [9], the AdaGrad method [10] and the RMSprop method [11] and so on. Afterwards the Adam 

method [13] combines the advantages of both AdaGrad and RMSprop to derive a more effective step size and 

becomes the most popular method. However，the Adam method can not converge to the minimal value of the 

objective optimization problem in some situations [14]. In 2018, AMSGrad method, an improved algorithm of 

Adam algorithm, was proposed [14].  The corresponding method modified the Adam algorithm by using the 

maximum of the second-order moment estimation of the gradient.  

In addition, Barzilai-Borwein algorithm [15] is better than gradient descent method for many 

optimization problems[16]. It uses the information of both current iteration point and the previous iteration point 

to determine the step size alone the negative gradient direction. For the strictly convex quadratic minimization 

problem, Barzilai and Borwein [15] proved that the algorithm converges superlinearly when 2n  . As to the 

case 2n  , Raydan [17] obtained the global convergence results, and Dai and Liao [18, 19] further proved that 

the algorithm converges linearly. With the help of nonmonotone line search [20], Raydan applied the BB 
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algorithm to solve the minimization problem for general nonquadratic functions. 

Inspired the works above, we combine the BB step with the AMSgrad algorithm to obtaina modified 

algorithm for convolutional neural network. And we analyze the convergence of the new method under some 

suitable conditions. 

This paper is organized as follows. In Section 2, we present the mathematical preliminaries.  We 

propose the BB-AMS grad algorithm and analyzes its convergence in Section 3. Finally, we give the 

experiments results in Section 4. 

 

2. Preliminaries 

Let us consider the following optimization problem for solving the Convolutional Neural Network 

(CNN): 

)(min t
Tt

f


(2.1)

                   

 

where )(:)( Ttft  is a smooth convex function.  

 

The AMS grad algorithm is an improvement of Adam algorithm [13], which effectively solves the 

problem that Adam algorithm does not converge in some cases, and also has a good effect on solving the 

problem (2.1). The update rule of the AMSgrad algorithm is as follows: 
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where 
，)( ttt fg  is the gradient value of the objective function at time t， 2

tg is the square of the gradient of 

the objective function, 
1 2 and (0,1)   are exponential decayrate,

tm is the biased first-order moment estimate 

of the gradient of the moment t, and tv is the second-order biased origin moment estimate of the gradient at 

moment t. 

Next, we introduce the Barzilai-Borwein algorithm [15]. The step size of this algorithm is 

calculated in the following format: 
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where
1 tt  1 tt ggg . Alsothe step size

t_BB can be obtained by another equation
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3. The Barzilai-Borwein step based AMSgrad algorithm 

In this section, we give the following modified AMSgrad algorithm based on Barzilai-Borwein step. 

Algorithm 1: Barzilai-Borwein step based AMSgrad algorithm (BB-AMSgrad) 

Parameter initialization: )(:)( Ttft  Is the objective function, and the initial step size 1 ， 000  vm ，

1t (Initial time), select the initial point 
1,

 

When the time t is the initial time 1: 

1 1
2 1
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While (when the iteration termination condition is not satisfied and the time t is greater than 1) do: 
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.1: t  

 

We analyze the convergence of the new algorithm using the similar way in [14]. The regret function [12] 

is defined as follows: 

*
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Lemma 1 [14, Lemma 2].If all the parameters satisfy the conditions of Theorem 1, then the following 

inequalities hold: 

2

1

,:1

21

2
4

1

1

||||
1()1)(1(

log1
||~|| 





 




d

i

iTtt

T

t

t g
T

mv
）


 (3.5) 

 

Now we present the convergence properties of the BB-AMSgrad method. 

Theorem 1. Assume that the function
tf has bounded gradients, i.e., ,||)(|| Gft  

for all 
dR  and 
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distance between any
t generated by BB_AMSgrad is bounded, Dmn  2||||  for any , {1,2,..., }.m n T
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Proof: From the assumptions and the equivalence of the norms, we can havethat :
d

D
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By the formula (3.3) in Algorithm 1, We can have the following expansion：
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From(3.7) and (3.2) in Algorithm 1, we can get 
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where the inequality in the above equation is obtained from the Cauchy-Schwarz inequality. Then 
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where the second inequality is obtained by summing both sides of (3.8). 

Thenfrom Lemma 1, we have that: 
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Substituting (3.10) into the (3.9), we can obtain: 
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Where the first inequality of (3.11) isby the condition 1
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Algorithm 1. The next equality follows from the expansion formula for the 2-norm. The second inequality 

follows from
2|| || ,|| || .n m n m
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Where the second equation is from
1

11

 t

t  . The proof is complete. 

 

4. Numerical experiments 

We use numerical experiments to test our algorithm BB_AMSgrad and compare it with several other 

related algorithms, AMSgrad, RMSprop and Adagrad. The experiments are completed in python 3. 6. 

We use convolutional neural network to implement the classification ofMnist dataset [21], color images 

CIFAR10 [22], CIFAR100 [22] and Caltech-101datasets[23], and we choose Alexnet model for the 

convolutional neural network model, which has 5 convolutional layers, 3 pooling layers (the pooling operations 

taken are maximum pooling methods) and 3 fully connected layers. We only perform gradient descent 

optimization on the last three fully connected layers, and the parameter we need to iterate in the fully connected 

layer is the weight matrix and bias. After the last layer of softmax processing we can get the cross-entropy 

loss function of the whole model, and the optimization problem can be expressed as: 

'

0,
lnmin i

n

i i
b

yy 



(4.1)

 

Where
iy  representing the true class of the sample, 

'

iy  represents the prediction class of the model. 

The MNIST dataset is a commonly used dataset in the field of machine learning, which consists of 60000 

training samples and 10000 test samples, each of which is a grayscale handwritten digital picture with 28 X 28 

pixels. The data set has ten categories from 0 to 9. 

The CIFAR-10 dataset consists of 60000 32x32x3 color images of 10 classes with 6000 images per class. 

There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one 

test batch, each with 10000 images. 

The CIFAR-100 dataset consists of 60000 32x32x3 color images of 100 classes with 600 images per 

class. There are 50000 training images and 10000 test images. 

Caltech-101 is a dataset composed of 101 different categories of color images, each category has 40 to 

800 color images, and the size of each image is 300x200x3. 

The parameters usedinalgorithm are set as： 

99.0,9.0,/1 21   tt
.  

The results show that on these datasets, The BB_AMSgrad algorithm can iterate to lower loss values 

compared to the other three algorithms. 
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Fig 1: Iteration of the classification loss function on the Mnist dataset 

 

Fig 2:Iteration of loss function on CIFAR10 dataset 

 

Fig 3: Iteration of loss function on CIFAR100 dataset 
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Fig 4: Iteration of loss function on Caltech-101 dataset 

 

These figures show the behaviors of the algorithms for the loss function values defined 

by(4.1).Compared with RMSprop and Adagrad algorithms and AMSgrad algorithm，it is clear from the Figure 

1-Figure 4 that our BB-AMSgrad algorithm has better results in experiments. 

Finally, we give the Validation classification accuracy of these four algorithms on these fourdatasets. In 

this experiment, we run each algorithm four times, and the average of the values of accuracy is listedin the 

following table. 

 

Table1: Validation classification accuracy 

Optimization 

algorithm 

Data set 

Mnist CIFAR10 CIFAR100 Caltech-101 

Adagrad 72.374% 64.248% 62.76% 64.25% 

RMSprop 91.53% 86.352% 86.658% 87.32% 

AMSgrad 92.232% 88.254% 86.854% 87.884% 

BB_AMSgrad 92.7% 89.45% 88.54% 89.23% 

 

It is obvious from this table that the BB_AMSgrad algorithm can achieve a higher Validation 

classification accuracy compared to the other three algorithms. 

 

5. Conclusion 

We presented the Barzilai-Borwein step with the AMSgrad (BB_AMSgrad) algorithm for 

solvingstochastic optimization problems in convolutional neural networks and showed its convergence. We 

compared BB_AMSgrad with AMSgrad, RMSprop and Adagrad. The numerical results show that our algorithm 

is advantageous in image classification tasks.In future work, we will analyze the boundedness of BB steps to 

obtain more stable convergence conditions. 
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