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Abstract: Robust Principal Component analysis (RPCA) can separate a low-rank matrix and a sparse matrix 

from a given data matrix. It can be applied in many engineering area, such as Video surveillance,Face 

Recognition and so on. In this paper, we use 1/2l norm to get an improved non-convex model without a 

regularization term. Based on the new model, we apply the ADMM algorithm to solve the original RPCA 

problem. The convergence analysis of the method is also presented. Numerical experiments show the efficiency 

of the new model and method 
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1. Introduction 
With the proliferation of high-dimensional data in many fields of scientific engineering, such as image 

video and biometric, we need to degrade the relevant data, and PCA is one of the most widely used statistical 

tools for data analysis and dimensional reduction. On the other hand, the existence of errors can cause the matrix 

low rank estimate to be far from its corresponding true value. In turn, the robustness of PCA has become one of 

the research directions, that is, the research data can be modeled as low rank part plus sparse part. In general, the 

robust PCA (RPCA) model is defined as follows: 

𝑚𝑖𝑛
𝐿,𝑆∈𝑅𝑚×𝑛

𝑟𝑎𝑛𝑘 𝐿 + 𝜌 𝑆 0     𝑠. 𝑡. 𝐿 + 𝑆 = 𝐷.（1） 

where𝐷 ∈ 𝑅𝑚×𝑛 is a given data matrix, 𝐿 ∈ 𝑅𝑚×𝑛 is a low rank matrix, and 𝑆 ∈ 𝑅𝑚×𝑛  is a sparse matrix.Model 

(1) is NP-hard and is numerically difficult to handle. However, under certain conditions, (1) can be equivalent to 

the following convex model： 

𝑚𝑖𝑛
𝐿,𝑆∈𝑅𝑚×𝑛

 𝐿 ∗ + 𝜌 𝑆 1     𝑠. 𝑡. 𝐿 + 𝑆 = 𝐷.（2） 

Besides model (1) and model (2), there are other non-convex models. In [1], The authors gives a simple RPCA 

non-convex model: 

𝑚𝑖𝑛
𝑈,𝑉

 𝑈𝑉𝑇 − 𝐷 1 ,（3） 

and the model does not regularization U and V. Model (3) can be rewritten as the following form: 

𝑚𝑖𝑛
𝑆
 𝑆 1       𝑠. 𝑡.   𝑆 + 𝑈𝑉𝑇 = 𝐷.（4） 

𝑈 ∈ 𝑅𝑚×𝑘   , 𝑉 ∈ 𝑅𝑛×𝑘 .Based on model (4)，the authors proposes an ADMM algorithm to solve the original 

problem. 

On the other hand, the non-convex approximations of  𝑙0𝑛𝑜𝑟𝑚 can yield better results. Thus, There are 

many non-convex function approximations of 𝑙0   𝑛𝑜𝑟𝑚 are proposed, such as𝑙𝑝  𝑛𝑜𝑟𝑚（𝑝 ∈ (0,1)）[2], SCAD 

function [3], Logarithm function [4], MCP function [5], Capped 1l function [6], ETP function [7], Geman 

function [8]，  Laplace function[9] and so on. In [10], the authors presented an iterative semi-threshold 

algorithm to solve the 𝑙1/2 regularization ,  numerical experiments also show the efficiency of the semi-

algorithm.  

Inspired by the research results above, we replace the𝑙1norm with the 𝑙1/2  norm based on model (4) in 

order to get more accuracy solution. We make an assumption that the rank of 𝐿 = 𝑈𝑉 does not exceed the 

specified estimate of 𝑘 < 𝑚𝑎𝑥(𝑚, 𝑛) and introduce the variable 𝑍 which satisfies Z = 𝐿, then we get a new 

nonconvex model as follows:  

𝑚𝑖𝑛 𝑍 − 𝐷 1

2

1

2𝑠. 𝑡.   𝑈𝑉 − 𝑍 = 0. (5) 

where 𝑈 ∈ 𝑅𝑚×𝑘𝑉 ∈ 𝑅𝑘×𝑛 . 
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The paper is organized as follows. In SectionⅡ, we propose an algorithm based on problem (5) and 

present the convergence result for the algorithm and the model. The numerical results and the conclusion of this 

paper are illustrated in Sections Ⅲand Ⅳ, respectively. 

 

2. Algorithms and Convergence 
We apply the augmented Lagrangian alternating direction method for solving problem (5).  First, we 

define the augmented Lagrangian function of (5) as follows： 

ℒβ(U, V, Z, Λ) = || Z − D ||1

2

1

2+< 𝛬 , 𝑈𝑉 − Z > +
β

2
  𝑈𝑉 − 𝑍  

F

2
,(6)        

Where 𝛽 > 0is a penalty parameter and Λ ∈ 𝑅𝑚×𝑛  is the Lagrange multiplier corresponding to the constraint 

𝑈𝑉 − 𝑍 = 0，< 𝑋, 𝑌 >=  𝑋𝑖 ,𝑗𝑖 ,𝑗 𝑌𝑖 ,𝑗denotes the inner product between matrices X and Y of equal sizes.Then 

we can solve problem (5) by solving the following optimization problems: 

 min𝑈,𝑉,𝑍 ℒ𝛽 (𝑈, 𝑉, 𝑍, Λ𝑙).(7)      

By the ADMM method, we can minimize the Lagrange function for each variable block of U, V, and Z in turn 

while fixing the other two blocks with their latest values, and then update the Lagrange multiplier . 

With the rule above, we get the following iterative form: 

𝑈𝑙+1 = argmin𝑈∈𝑅𝑚×𝑘 ℒ𝛽  U, 𝑉𝑙 , 𝑍𝑙 , Λ𝑘 (8a) 

𝑉𝑙+1 = argmin𝑉∈𝑅𝑘×𝑛 ℒ𝛽  𝑈
𝑙+1, V, 𝑍𝑙 , Λ𝑙 (8b) 

𝑍𝑙+1 = argmin𝑍∈𝑅𝑚×𝑛 ℒ𝛽  𝑈
𝑙+1, 𝑉𝑙+1, 𝑍, Λ𝑙 (8c) 

Λ𝑙+1 = Λ𝑘 + 𝛾𝛽 𝑈𝑙+1𝑉𝑙+1 − 𝑍𝑙+1 .  (8d) 

Where 𝛾 > 0 is a step length. The subproblems (8a) and (8b) are simple least squares problems, whose solutions 

are： 

𝐵 = 𝑍 −
Λ

𝛽
, 𝑈𝑙+1 = 𝐵𝑉† , 𝑉𝑙+1 = (𝑈𝑙+1)†𝐵.   (9) 

𝑋†  denotes the pseudo-inverse of the matrix X. In addition, (9) can be rewritten as following form[1]: 

𝐵 = 𝑍 − Λ/β, 𝑈𝑙+1 = orth(𝐵𝑉𝑇) ,𝑉𝑙+1 = 𝑈𝑙+1𝑇𝐵. 

Differ from [1], we use 𝑙1

2

 norm to construct the mode in this paper. Therefore we need to rewritten 

the solution 𝑍𝑙+1 to the subproblem (8c).  According to [10], the  𝑙1

2

 norm can be calculated by the iterative half-

threshold algorithm, 

𝑅
𝜆，

1

2

 𝑥 = ((𝑓
𝜆，

1

2

 𝑥1 ，𝑓
𝜆，

1

2

 𝑥2 , 𝑓
𝜆，

1

2

 𝑥𝑁 )
𝑇 , 

𝑓
𝜆，

1

2

 𝑥 =
2

3
𝑥𝑖(1 + cos⁡(

2

3
𝜋 −

2

3
𝜑𝜆 𝑥𝑖 ), 

𝜑𝜆 𝑥𝑖 = arccos⁡(
𝜆

8
(
 𝑥𝑖  

3
)−

3

2), 

𝑕
𝜆，

1

2

 𝑥 =  
𝑓
𝜆，

1

2

 𝑥   𝑥 >
 54

3

4
（λ)

2

3

0          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 . 

It implies that  𝑍𝑙+1 can be expressed as following form: 

𝑍𝑙+1 =  
𝑓1

𝛽
，

1

2

 𝑈𝑙+1𝑉𝑙+1 − 𝐷 +
Λ

𝛽
 + 𝐷          𝑥 >

 54
3

4
（

1

𝛽
)

2

3

𝐷         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

   .（10） 

Summarizing the result (8d), (9) and (10), we give the following algorithm framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1:  𝒍𝟏/𝟐 method 

1. Input D, initial rank estimate k，parameter 𝛽，𝛾 

2. set 𝑙=0.initialize𝑉0 ∈ 𝑅𝑘×𝑛 , 𝑍0, Λ0 ∈ 𝑅𝑚×𝑛  
3. while not converge do 
4.       Compute 𝑈𝑙+1, 𝑉𝑙+1， by(9)，𝑍𝑙+1 𝑏𝑦 (10), and Λ𝑙+1 𝑏𝑦 (8𝑑) 

5.       Increment 𝑙，and possibly re-estimate 𝑘 and adust sizes of iterates. 
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Next, we start to give the convergence analysis. It is straightforward to derive the KKT conditions for 

(5): 

⋀ ∈ 𝜕𝑍( 𝑍 − 𝐷 1

2

1

2), 

⋀𝑉𝑇 = 0, 𝑈𝑇 ⋀ = 0, 

𝑈𝑉 − 𝑍 = 0, 

where, for any 𝛽 > 0，⋀ ∈ 𝜕𝑍( 𝑍 − 𝐷 1

2

1

2)is equivalent to 

𝑍 − 𝐷 +
Λ

𝛽
∈

1

𝛽
𝜕𝑍   𝑍 − 𝐷 1

2

1

2 + 𝑍 − 𝐷 .     （11） 

On the other hand, since 𝑥 ∈ 𝑅0
𝑁 is the solution to the problem 

min𝑥𝜖𝑅𝑁 {cos ∥ 𝑦 − 𝐴𝑥 ∥ +𝜆 ∥ 𝑥 ∥1

2

1

2}, 

then the first-order optimal condition with respect to variable x can be obtained, i.e., 

0 = AT Ax − y +
𝜆

2
∇(∥ 𝑥 ∥1

2

1

2), 

where ∇ ∥ 𝑥 ∥1

2

1

2 is the gradient of ∥ 𝑥 ∥1

2

1

2.  Multiplying by positive parameter μ and adding x  on both sides of 

formula above, then we have 

x + μAT y − Ax = x +
𝜆𝜇

2
∇(∥ 𝑥 ∥1

2

1

2). 

Because the operator 

𝑅
𝜆，

1

2

 .  = (𝐼 +
𝜆

2
∇(∥. ∥1

2

1

2)−1 

is well defined for any positive real 𝜆 by the fact that ∇(∥ 𝑥 ∥1

2

1

2) exists, then from [10], the equation 𝑥 = 𝑦 +

𝜆

2
∇ ∥ 𝑦 ∥1

2

1

2 has a unique solution𝑦∗ = 𝑅
𝜆，

1

2

 𝑥 for any 𝑥𝜖𝐷1

2

𝑁 . 

Let 𝑥 = 𝑍 − 𝐷 +
Λ

𝛽
  and 𝑦 =  𝑍 − 𝐷, from the analysis above, we can rewrite (11)as 

𝑥 = 𝑦 +
𝜆

2
∇(∥ 𝑦 ∥1

2

1

2), 

and the equation has a unique solution 𝑦∗ = 𝑅
𝜆，

1

2

 𝑥 .  Then we have 

𝑍 − 𝐷 = (𝐼 +
𝜆

2
∇(∥ 𝑥 ∥1

2

1

2)−1 = (𝐼 +
𝜆

2
∇(∥ 𝑍 − 𝐷 +

Λ

𝛽
∥1

2

1

2)−1. 

Therefore the KKT conditions of (5) can be written as, for any 0  ,  

⋀𝑉𝑇 = 0, 𝑈𝑇 ⋀ = 0，𝑈𝑉 − 𝑍 = 0,（12a） 

 

𝑍 − 𝐷 = (𝐼 +
𝜆

2
∇(∥ 𝑍 − 𝐷 +

Λ

𝛽
∥1

2

1

2)−1.（12b） 

We have the following convergence theorem.  

 

Theorem 1:Let 𝑋 ≜  𝑈, 𝑉, 𝑍, ⋀  and  𝑋𝑙 𝑗=1
∞   be generated by Algorithm 1，Assume that  𝑋𝑙 𝑗=1

∞  is bounded 

and lim𝑗→∞ 𝑋
𝑙+1 − 𝑋𝑙 = 0. Then any accumulation point of  𝑋𝑙 𝑗=1

∞  satisfies the KKT conditions (12). In 

particular, whenever   𝑋𝑙 𝑗=1
∞ converges，it converges to a KKT  point of (5). 

 

Proof:It follows from (9), (12) and the identities𝑉†𝑉𝑉𝑇 = 𝑉𝑇  and (𝑈𝑙+1)⊺𝑈𝑙+1(𝑈𝑙+1)⊺ = (𝑈𝑙+1)⊺, that 

(𝑈𝑙+1 − 𝑈𝑙)𝑉𝑙(𝑉𝑙)⊺ = (𝑍𝑙 −
⋀𝑙

𝛽
− 𝑈𝑙𝑉𝑙)(𝑉𝑙)⊺, 

 𝑈𝑙+1)⊺𝑈𝑙+1(𝑉𝑙+1 − 𝑉𝑙 = (𝑈𝑙+1)⊺(𝑍𝑙 −
⋀𝑗

𝛽
− 𝑈𝑙+1𝑉𝑙), 
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𝑍𝑙+1 − 𝑍𝑙 = 𝐼 +
𝛽

2
∇(∥ 𝑍 − 𝐷 +

Λ

𝛽
∥1

2

1

2)−1 + 𝐷 − 𝑍𝑙 , 

Λ𝑙+1 − Λ𝑙 = 𝛽(𝑈𝑙+1𝑉𝑙+1 − 𝑍𝑙+1) . （13） 

Since  𝑋𝑙 𝑙=1
∞  is bounded by our assumption, the sequences  𝑉𝑙(𝑉𝑙)⊺ 𝑙=1

∞  and  (𝑈𝑙+1)⊺𝑈𝑙+1 𝑙=1
∞  are bounded. 

Hence lim𝑙→∞ 𝑋
𝑙+1 − 𝑋𝑙 = 0 implies that both sides of (12) all tend to 0 as   𝑙  goes to infinity.  Consequently, 

𝑈𝑙𝑉𝑙 − 𝑍𝑙 → 0, Λ𝑙(𝑉𝑙)⊺ → 0,  𝑈𝑙 ⊺Λ𝑙 → 0,(14a) 

𝐼 +
𝛽

2
∇(∥ 𝑍 − 𝐷 +

Λ

𝛽
∥1

2

1

2)−1 + 𝐷 − 𝑍𝑙 → 0,(14b) 

where the first limit in (14a) is used to derive other limits. That is, the sequence  𝑋𝑙 𝑙=1
∞  satisfies KKT 

conditions (12),from which the conclusions of the proposition follow readily. This completes the proof. 

 

3. Numerical Experiments 
In this section, we compare the algorithm 𝑙1/2 method with the LMaFit and IALM methods to verify 

the validity of the algorithm. First of all, the corresponding marks and experimental instructions are given. 

𝑘∗represents the rank of the low rank matrix 𝐿,  𝑆∗ 0is the number of non-zero elements for sparse matrix S，
and the density of 𝑆∗ by  𝑆∗ 0/𝑚𝑛. We compared the performance of the algorithm involved by the number of 

cycles(iter), CPU time (seconds), the relative error between the recovered low-rank matrix 𝐿 and the exact one 

𝐿∗, 

𝑟𝑒𝑙𝑒𝑟𝑟 ≔
 𝐿−𝐿∗ 𝐹

2

 𝐿∗ 𝐹
2  . 

For random questions, theiter, CPU, and relerrin the numeric results are the averages of the 

corresponding results. We selectively used the following three stopping rules for all three codes compared： 

(1) 𝑟𝑒𝑙𝑒𝑟𝑟 < 𝑡𝑜𝑙1, (2)𝑟𝑒𝑙𝑐𝑕𝑔 < 𝑡𝑜𝑙2 , (3)𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥𝑖𝑡 , 

where 𝑟𝑒𝑙𝑐𝑕𝑔 ≔
 𝐿𝑗−𝐿𝑗−1 

𝐹

2

 𝐿𝑗−1 
𝐹

2 .tol1 and tol2 are prescribed tolerance values, and maxit is a prescribed maximum 

iteration number with the default value set to 100. We used rules (2) and (3) for comparing recoverability, and 

we used rules (1) and (3) to compare running speed. In some difficult cases, we do make an exception for IALM 

when it had trouble to reduce the relative error to a prescribed tolerance as other two codes could. All numerical 

experiments were performed on a notebook computer with an Inter®Core™i7-8565U1.80GHz processor, 8G 

memory. 

 

4. Numerical Results 
Test 1:  Random matrices with rank 𝑘∗ = 10 were constructed by the method in the section 3.3in[1]. 

The sparse matrices were from five images in the Matlab Image Processing toolbox: “blobs”, “circles”, 

“phantom”, “text” and “rice”. We run our algorithms, LMaFit and IALM, without and with noise added 

respectively. 𝑙1/2  method and LMaFit use the stop criterion 𝑡𝑜𝑙2 =  10−4,  IALM uses the stop criterion 

𝑡𝑜𝑙3 = 10−4.  The other operating parameter settings are same as the ones in [1]. The relative errors generated 

by the algorithms are shown in Tables 1 and 2.The recovered images are shown in Figures 1 and 2, where one is 

a sparse image of recovery without adding pulse noise, and the other is a sparse image with a pulse noise value 

of 0.15 that is randomly added with a pulse noise value of 10% pixels.  

 

Table 1：Relative error without noise 

Solver/Pattern blob circle phantom text rice 

𝑙1/2 method 5.12e-4 2.73e-4 1.14e-4 2.76e-4 2.43e-4 

Lmafit 6.42e-4 3.56e-4 1.20e-4 4.18e-4 2.51e-4 

IALM 8.22e-1 9.17e-1 6.46e-1 1.73e-1 2.99e-1 

 

 

 

 

Table 2：Relative error with a pulse noise value of 0.15 

Solver/Pattern blob circle phantom text rice 
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𝑙1/2 method 4.60e-4 1.92e-4 1.17e-4 3.38e-4 2.19e-4 

Lmafit 6.21e-4 9.09e-4 1.93e-4 3.65e-4 5.80e-4 

IALM 7.18e-1 8.54e-1 5.29e-1 1.37e-1 2.80e-1 

 

 

 
Fig 1：Recovery images that does not have noise. From top to bottom are 𝑙1/2 method, Lmafit, IALM recovery 

images 

 

 

 
Fig2：Recovery images with 0.15 noise value images.  From top to bottom are 𝑙1/2 method, Lmafit, IALM 

recovery images 

 

As can be seen from Tables 1 and 2, 𝑙1/2  method produce less relative errors than the other two 

methods.Figure 1 and 2 show that image recovery by the 𝑙1/2 method  is better than the results from Lmafit and 

the IALM algorithm. 
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Test 2：Considering that low-rank matrices are determinic, sparse matrices are random. Our test is on 

a "board"image with 256× 256. We reconstruct the image by adding a sparse matrix whose non-zeros are 

uniformly distributed in [0,1], and the locations of the nonzeros are uniformly randomly sampled. The sparsity 

level  𝑆∗ 0/𝑚2 range from 0.05 to 0.8,with increment 0.05. The results of the comparison are shown in Figure 

3. The relative error result is shown in Table 3. 

 
Fig 3: From left to right (1) is the reconstructed image with 70% noise, (2) recovered by the 𝑙1/2method (3) 

recovered by the IALM algorithm, (4) recovered by the Lmafit. 

 

Table 3: results of relative error 

Algorithm XY RelErr Z RelErr 

𝑙1/2method 1.807e-2 1.247e-2 

IALM 1.597e-1 1.091e-1 

Lmafit 2.336e-2 1.559e-2 

 

From the numerical results, the 𝑙1/2 method is significantly better than the IALM and slightly better 

than the Lmafit method in terms of the relative error of the recovery image to determine the noise increase of the 

low rank matrix. 

Test 3：We consider the issue of video background extraction in [3]. We compared four video 

background extraction issues with LMaFit ,  IALM  and 𝑙1/2 method.The CPU time results are reported in the 

last three columns of  Table 4. Resolution denotes the size of each frame in a video clip, and No. frames denotes 

the numberof frames tested. 

 

Table 4：Video separation issue statistics and CPU usage time 

Video Resolution No.frames IALM LMaFit 𝑙1/2method 

RPCA video 48*48 50 5.865 0.365 2.394 

demo 64*36 180 5.437 1.696 3.959 

Shop 192*144 100 480.407 13.4204 180.970 

escalotor 160*130 180 421．807 23.210 168.327 

 

From Table 4, 𝑙1/2 algorithm requires more CPU time than the Lmafit algorithm, less than the IALM 

algorithm.In our algorithms 𝑙1/2 of explicit expressions takes longer to evaluate than 𝐿1 needs, so the experiment 

takes more time. But the time required is only about half that of the IALM algorithm. 

 

5. Conclusion 
In this paper, we constructed a nonconvex model based on 𝐿1/2 norm for RPCA problem. We also 

prove the simple convergence results of the algorithm corresponding to the new model. Numerical experiments 

verify that our model is more recoverable than the LMafit algorithm and less CPU-cost than the IALM 

algorithm, but our method takes far more time than the Lmafit, which is also a flaw that cannot be ignored. We 

should  to find  ways to accelerate and reduce the time it takes for our approach to be found in future studies. 
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