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Some delay integral inequalities and applications
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Abstract: In this paper, we establish some new types of delay integral inequalities with two independent
variables on time scales. The inequalities can be used in the investigation of qualitative properties of delay
dynamic equations. We also propose some applications for them.
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I. INTRODUCTION

The development of the theory of time scales was initiated by Hilgewr [1], and the purpose of the
theory of time scales is to unify continuous and discrete analysis. A time scale is an arbitrary nonempty closed
subset of the real numbers. Many integral inequalities on time scales have been established since then, for
example [2-11], which have been designed in order to unify continuous and discrete analysis. But to our
knowledge, the delay integral inequalities on time scales have been scarcely payed attention to in the literature
so far [12,13], and furthermore, nobody has studied the delay integral inequalities with two independent
variables on time scales.

Our aim in this paper is to establish some new delay integral inequalities with two independent
variables on time scales, and present some applications for them. For two given sets G, H, we denote the set
of maps from G to H by (G,H), while denote the definition domain and the image of a function f by
Dom(f) and Im(f) respectively.

In the rest of the paper, R denotes the set of real numbers and R _=[0,00). T denotes an arbitrary

time scale and T, =[x,,00) T, To =[y,,0) T, where x,y, T . The set T* is defined to be T if T does

not have a left-scattered maximum, otherwise it is T without the left-scattered maximum. On T we define
the forward and backward jump operators o(t)e(T,T) and p(t) e(T,T) such that o(t)=inf{seT,s>1t},

pt)=sup{seT,s<t}

Definition 1: Apoint teT with t>infT issaid to be left-dense if p(t) =t and right-dense if o(t) =t,
left-scattered if p(t) <t and right-scattered if o(t) >t.

Definition 2: A function f < (T,R) is called rd-continuous if it is continuous in right-dense points and if the
left-sided limits exist in left-dense points, while f is called regressive if 1+ 4(t)f(t)=0, where

ut)=o(t)-t. C, denotes the set of rd-continuous functions, while R denotes the set of all regressive and
rd-continuous functions, and
R ={f|f eR1+u(t)f(t)>0,VteT}

Definition 3: For some teT*, and a function f (T,R), the delta derivative of f is denoted by f*(t), and
satisfies
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| f(o(t)— f(s)— F2(t)(o(t)-s)|<e|o(t)—s| forve>0, where seU,and U is a neighborhood of t. The
function f is called delta differential on T*
Similarly, for some yeT*, and a function f (T xT,R),

the partial delta derivative of f with respectto y isdenoted by (f(x, y))é, and satisfies

| f(x,a(y))— T (x,8)=(f(x, )5 (c(y)-s)I< | o(y)—s| forve>0,where scU,and U isa neighborhood

of y.
Definition 4: For some a,beT anda function f <(T,R),the Cauchy integral of f is defined by

j)'f(t)At:F(b)—F(a)'

where F*(t)= f(t),teT*.
Similarly, for somea,beT and a function f < (T xT,R), the Cauchy partial integral of f with respect to
y is defined by

jif(x, y)Ay = F(x,b) - F(x,a)

where (F(x,y)); = f(x,y),yeT"

More details on time scales can be referred to [14]..
Il.  Main Results

We will give some lemmas for further use.

Lemma 2.1 ([14], GronwallOs inequality): Suppose X T, is an arbitrarily fixed number, and u(X,y),

b(X,y)eC,, m(X,y)eR  withrespectto y, m(X,y)>0, then

u(x,y) sb(X,y)+jm(X,t)u(X,t)At, yeTo

Yo

implies

u(X,y)<b(X,y)+ j e, (y,o®)b(X,t)m(X,t)At,y eTo

Yo

where g_(y,y,) is the unique solution of the following equation

(X, )y =m(X,y)z(X,y). 2(X, y,) =1-

Lemma 2.2 [15]: Assume that a>0,p>q>0,and p=0,thenforany K >0,

Theorem 2.1: Suppose u, f,g,heC,,(T,xTo,R,): P,q,r

m,C are constants,and p>q>0,p>r>0,p>m=>0,
p#0,C>0,7 (T, T),7(X) <x,~o<a=inf{r,(x),xeT} < X,
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7, e(‘fo,T),rz(y)g y,—o< B =inf{r,(y), yefo}s Yo

¢eC, ([, x,1x[B,¥,)NT?R,), K>0 is an arbitrary constant. If for (x,y)e(T,,T,), u(xy) satisfies the

following inequality

uf(x,y)<C+ Jy' 'X[[f (s,t)u(z,(s), 7, (£)) + 9 (s, t)u" (7,(S), 7, (t))]ASAt +'y[

Yo %o 0 % Yo

with the initial condition

{U(X. y)=a(x y). xe[a, x]NT,or,y e[, y,]NT |
B(z,(0,7,(1) < C7,7,(X) < %,01, 7, (¥) < Yo

then
u(x, y) <[B,(x, y) + feBz (v, o (1)B, (x DB, (x AL, (x.¥) € (T, T,) ©)
where

B,(x,y)=C+| [[f (s,t)p—;q KF + g(s,t)% Ke 4| h(g,n)p;pm KFAEAR]ASAL

Yo Xo Yo Xo

B,(x.¥)=[Lf(s, y)%K”ﬂg(s,y)%K% + [ h(é,n)%K?AéAn]AS'
X

3o %
Proof : Givenafixed X eT,,and xe[x, X]NT,yeT, . Let the right side of (1) bev(x, y), then
(% ) VP (x,Y) SV (X, ), ¥ e D, XINT,y €T,
If 7,(X)=x, and 7,(Yy)=Y,, then
7,(X) €[%,, XINT, 7,(y) €T, , and
U(5,(9, 7,()) <V (109, 7,(y)) <V* (%, ¥)

If 7,(X) <X, or 7,(Y)<Y,, then from (2) we have

U5, (9, 7,(¥)) = 45, (%), 7, () <C* <V (x,y)
From (5) and (6) we always have
U5 (0, 7, (Y) <VF (%, Y), XD, XINT, y €T,

So

j.t[.S[h(é’n)um(rl(é:)lTz(n))Aé:AUASAt
X Yo %o

@)

)

(4)

®)

(6)

™
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V(X,y) =C+ [ [[f (5,0 (r,(5), 7,(0) + 95, 0u" (7(5), 7, (O)]AsAt + [ [ [(&,mu" (7€), 7, ()AcAnAsAL
X Yo %o

Yo %o Yo %o Yo

<C+ f 'X[[f (5,V* (5,8) + g (s, )VF (5, 1) AsAt +f T j j h(E V" (£, 7)AEA pASAL 8)
X0 Yo %o

Yo %o Yo % Yo
From Lemma 2.2, for YK >0, we have

v%(x, y) < a KL“pv(x, y) +P=Ay
p p

a
P

r —p — r (9)
V(% y) < —K T v(x,y)+ =LK
p p

m

p-m

VE(X,y) < % K v(x, y)+

Combining (8), (9) we have

a
P

v(X, y)<C+H[f(st)( K7 v(st)+—qK

Yo Xo

)
+9(s, t)(—K v(s t)+ . K )]AsAt

+

—
—_—

X
| Mk F)acanasat
X

[he, n)(—K e+ P
X

=<
B3

0 0

<c+”[f(st)p ks +g(st)p KFasat Jij

Yo %o Yo %o Yo

i h(zn) P K acayasat
. p

+j{]'[f (s,t)%KL"p +g(s,t)%K% +f jﬂjjﬁh(;,n)% K7 AZARASIV(X )AL

Yo %o Yo

:BI(X,y)+Jy-Bz(X,t)V(X,t)At (10)

Yo
From Lemma 2.1 we have
u(x,y) <B(X,y)+ feBz (v, o (0)B,(X,O)B,(X, )AL, YET, (11)
Yo
Then combining (4), (11) we obtain
06, <IB(X, ) + [ o (7,0 NBLX, DB(X DAL, XD, XINT,y <T, (12)
Yo

Take x= X, then it follows
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u(Xx,y) <[B,(X,y)+ T &, (Y, o ()B, (X, 1)B, (X DA (13)

Yo

Considering X T, is arbitrary, substituting X with x we can obtain the desired inequality (3).

Remark 1: If we take T=R,p=qg=1g(x,y)=h(xy)=0, then Theorem 2.1 reduces to [16, Theorem 2.2],
which is one case of integral inequality for continuous function.

Remark 2: If we take T=Z7, p=ga,a(x,y)=C,b(x,y)=Lh(x,y) =0,
then the Theorem 2.1 reduces to [17, Corollary 2.6], which is one case of discrete inequality..
Ill.  APPLICATIONS
In this sections, we will present some applications for the results we have established above, and try to
give explicit bounds for solutions of certain dynamic equations.

Example 1: Consider the following delay dynamic differen-tial equation
PO = FOG Y, U0 7 (M) (%, ) € (T, To) (14)
with the initial condition

{U(X. Y)=(x.y) xelaxINT o,y e[5,yINT (15)
195,00, 2, I C P17, (0 < 45,01, 7,(y) < g

where ueC,(T,xTo,R), p>0 isaconstant, C=u"(x,,Y,)

$eC, ([, %,]x[B, Y, DNT%R), «,B,z,,z, arethesame asin Theorem 2.1.

Theorem 3.1: Suppose u(x,y) isasolution of (14),and |F(x,y,u)|< f(x, y)|ul|® +g(x,y)|u| , where
f,g,q,r are
defined the same as in Theorem 2.1, then

lu(x, y) I<[B,(x, y) + feBz (v, o (0)B, (% DB, (x AL, (% ¥) e (T, Ty) (16)
where

PR q —_— r
B,(x y)=Cl+[ [[f (s,t)p—;q K*+ g(s,t)% K *]AsAt

Yo %o

X ap r .
Bz(x.y)=j[f(s,y)%t< SXCHIS et
Xo

Proof: The equivalent integral equation of (14) can be denoted by

uP(x,y)=C+ f j F(s,t,u(z,(), 7, (t))) AsAt 17)

Yo %o

Then
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P (6 Y I C 1+ [IF(sLU(E (). 7,(1)) | Asat

Yo %o

¢ 1+ [T 6000, 7,0) + 905,00 (5(5) 2, O)] st

Yo %o

and a suitable application of Theorem 2.1 yields the desired inequality (16).
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