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I. INTRODUCTION 
Climate change can lead to severe impacts on different major sectors of the world such as water resources, 

agriculture, energy and tourism (Osman et al., 2014). Several studies have reported that the Middle East region 

may face more aridity due to temperature increase and rainfall decrease (Al-Rijabo and Salih, 2013; Bilal et al., 

2013; Zakaria et al., 2013; Osman et al., 2014; Azooz and Talal, 2015). Iraq is located in the southwestern part of 

the Asian continent and extended between latitudes 29.5∘–37.22∘N and longitudes 38.45∘–48.45∘E (Hashim et al., 

2013). Iraq has the climatic zone between continental and subtropical. Winters are usually cool to cold, with an 

average daily temperature that reaches 16 ∘C and drops to 2 ∘C at night. Summers are dry and extremely hot, over 

43 ∘C during July and August but drop to 26 ∘C at night (Zakaria et al., 2013). The continental climate in Iraq is 

described as hot, dry summers and cool, wet winters, with north-westerly prevailing winds. Most of the rainfall 

occasionally occurred by the fluctuation of storm weather in the Mediterranean region during the winter, as it 

moves towards the east and across the northern Iraq (Kashef Al-Kataa, 1982). To develop strategies and to make 

informed decisions about the future water allocation for different sectors and management of available water 

resources, planners need information about the impacts of climate changes on meteorological parameters (usually 

in terms of watershed scale precipitation and temperature) that can directly be used by the hydrologic impact 

models. Atmosphere-ocean coupled Global Climate Models (GCMs) are the main source tools used to simulate 

present and future climate of the earth under different climate change scenarios. However, the course scaled GCM 

projections (usually grids of 104–105 km2) cannot be applied directly in hydrologic studies at regional scales. The 

objectives of this study are to investigate the ability of statistical downscaling model in reproducing the 

meteorological parameters (i.e. precipitation) and, hence, to analyze the impact of future climate changes (2011-
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1971-2000 corresponding to 12 stations located in Iraq. The future precipitation for 12 stations of 
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2099) on precipitation in several station of Iraq. The outcomes from this study would help decision makers and 

researchers in better future planning for the water resources in Iraq and help in finding ways and means to 

minimize the effect of climate change on the inhabitants and the environment. 

 

II. STUDY AREA AND DATA DESCRIPTION: 
 Iraq is located; geographically in the East Mediterranean Region. Bound by South Anatolia in the north, Iran in 

the east and northeast, Syria and Jordan in the west; it opens on the Saudi Arabia, Kuwait and the Gulf at the 

south. The total population in Iraq in 2017 is about 37.139.519. Iraq is composed of 18 Governorates. Twelve 

sites were selected across Iraq to represent as much as possible major climatic regions in the country (Fig. 1). As 

such, the selected stations extend from the north to the south of the country where most of the agricultural and 

urban areas are present. The investigated stations are Baghdad, Kirkuk, Mosul, Sulaymaniyah , Najaf, Nasiriyah, 

Al-Hay , Basra, Zakho, Erbil, Salah ad Din and Khanaqin. The observed data of those stations were obtained from 

Iraqi National Meteorological Organization and seismology. The data availability is listed in Table 2 with their 

corresponding mean annual precipitation. The observed daily rainfall data of the stations Kirkuk, Mosul, Baghdad, 

Nasiriyah, Najaf , Al-Hay, Basra and Khanaqin were available for the period 1961–1990. While, for the remainder 

stations (Sulaymaniyah, Zakho, Erbil and Salah ad Din) the data were from 1971–2000. For better understanding 

of the climate behavior in those stations, the mean monthly precipitation was depicted as shown in (Fig.2). As it 

can be seen from the figure, the mean monthly precipitation of the twelve stations over the respective period 

ranged from 140-20 mm in January to zero in the summer months (Jun, July, August) and September.  

 

 
 

Fig. 1 Geographic map of Iraq with locations of 12 meteorological stations. 

 

Table 1 Location details of the twelve stations in Iraq 

Table 1 presents a detail description about the locations of the investigated stations. 

 

Station Latitude Longitude Altitude(m) Area(km²) Population 

Bagdad 33º 18´ N 44º 24´ E 34 204.2 7.665 

Basra 30º 31´ N 47º 47´ E 5 181 2.15 

Erbil 36°11′28″N 44°0′33″E 390 197 852,500 

Al-Hay 32°10′ N 46°03′E 20 ---- 84,800 

Najaf 32° N 44°20′00″E 60 28,824 1,389,500 

Nasiriyah  31°03′ N 46°16′E 9 12,900 860,200 

Zakho 37°08′37 N 42°40′54.88″E 440 ---- 350,000 

Sulaymaniyah 35º 33´ N 45º 25´E 882 20,144 1.256 

Salah ad Din 34°27′ N 43°35′E ----- 24,751 1.408 

Khanaqin 34°20′ N 45°23′E 183 ---- 150,000 

Mosul 36.34° N 43.13°E 223 180 664,221 

Kirkuk 35°28′ N 44°19′0″E 350 9,679 850 787 

 

Table 2 Description of data availability for the twelve stations used in the study 
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Station Period Mean annual precipitation (mm) 

Baghdad 1961-1990 31.1 

Basra 1961-1990 31.3 

Erbil 1961-1990 11.8 

Al-Hay 1971-2000 60.8 

Najaf 1961-1990 8.12 

Nasiriyah 1961-1990 9.5 

Zakho 1961-1990 60 

Sulaymaniyah 1961-1990 10.7 

Salah ad Din 1971-2000 52.9 

Khanaqin 1971-2000 34.6 

Mosul 1971-2000 50.2 

Kirkuk 1961-1990 25.5 

 

 
 

Fig.2 Monthly precipitation at weather stations for the baseline period (1961–1990) and (1971-2000). 

 

The 26 predictors of NCEP/NCAR (National Center for Environmental Prediction/ Atmospheric Research) 

reanalyzed predictors with grid resolution 2.5°×2.5° were freely downloaded from:  

 

(https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml). The HadCM3 climate model of the Canadian 

model for the A2 and B2 scenarios with grid resolution (2.5° x 3.75°) were obtained from a Canadian Centre 

for Climate Modelling and Analysis: (http://climate scenarios.canada.ca/?page=pred-canesm2) for the periods of 

1961–2001 and 1961–2099 (Table 3). These predictors are assigned in zip file format and have three files inside; 

NCEP_1961-2001, H3A2a_1961-2099, and H3B2a_1961-2099, this technique was used especially as an input in 

SDSM model. The normalized predictors are only available for HadCM3 and CanESM2 in such a form that can 

be downloaded according to the coordinates of the study area and used directly for SDSM.  
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III. DOWNSCALING OF GCM OUTPUTS USING SDSM MODEL 
Description of SDSM : Downscaling of climate data to local level was done by SDSM software, which was 

downloaded freely from http://www.sdsm.org.uk. It was used to develops quantitative relationship between the 

large scale GCM (predictor) and local surface variables (e.g. rainfall and temperature), which are observed data 

from ground meteorological stations, based on multiple regression technique. Reanalysed atmospheric dataset 

obtained from National for Environmental prediction (NCEP) together with observed data were used for model 

calibration and validation. The HadCM3 predicators for A2a and B2a scenarios were obtained from Prof. Wilby 

at Loughborough University, UK. The most commonly used predictor variables for the NCEP and HadCM3 GCM 

experiment are listed in Table 3. These were inputs into the SDSM model. 

 

Table 3 NCEP and HadCM3 predictors which used in SDSM downscaling method 

 

No Notations predictor full name No Notations predictor full name 

1 ncepmslp mean sea level pressure 14 Ncepp500 
500 hpa 

geopotential 

2 Ncepp5-f 500 hpa wind speed 15 ncepp850 
850 hPa 

geopotential 

3 Ncepp5-u 500 hpa U-component 16 ncepp-f 
1,000 hpa wind 

speed 

4 Ncepp5-v 500 hpa V-component 17 ncepp-u 
1,000 hPa U-

component 

5 Ncepp5-z 500 hpa vorticity 18 ncepp-v 
1,000 hPa V-

component 

6 Ncepp5th 500 hpa wind direction 19 ncepp-z 1,000 hpa vorticity 

7 Ncepp5zh 500 hpa divergence 20 ncepp-th 
1,000 hpa wind 

direction 

8 Ncepp8-f 500 hpa wind speed 21 ncepp-zh 
1,000 hpa 

divergence 

9 Ncepp8-u 850  hpa U-component 22 Nceppr500 
500 hPa relative 

humidity 

10 Ncepp8-v 850 hpa V-component 23 Ncepr850 
850 hPa relative 

humidity 

11 Ncepp8-z 850 hpa vorticity 24 nceprhum 
1,000 hPa relative 

humidity 

12 Ncepp8th 850 hpa wind direction 25 ncepshum 
1,000 hpa specific 

humidity 

13 Ncepp8zh 850 hpa divergence 26 nceptemp temperature at 2m 

 

In SDSM, some suitable predictors from the atmospheric predictors are selected through a multiple linear 

regression model, utilizing the combination of the correlation matrix, partial correlation, P value during the 

selection of predictors. There are two kinds of optimization methods: (1) ordinary least squares (OLS) and (2) 

dual simplex (DS). The OLS produces comparable results with DS and is also faster than DS (Huang et al. 2011). 

There are three kinds of sub-models—monthly, seasonal, and annual—that comprise the statistical/empirical 

relationship between the regional-scale variables (temperature and precipitation), and large-scale atmospheric 

variables. Annual sub models drive the same kind of regression parameters for 12 months and the monthly sub-

model represents 12 regression equations, giving different calibrated parameters for each of the 12 months. There 

are also two kinds of sub-models, conditional and unconditional; any of them can be used according to the local-

scale variables. The conditional sub-model is used for variables such as precipitation and evaporation (Wilby et 

al. 2002; Chu et al. 2010). Most of the time, precipitation data is not distributed normally, but in the case of 

temperature, the data is distributed normally. SDSM can transform the data to make it normal before using the 

data in regression equations (Khan et al. 2006). For example, Khan et al. (2006) and Huang et al.  

http://www.sdsm.org.uk/
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(2011) used the fourth root for precipitation to render it normal before using it in a regression equation. The major 

steps adopted for downscaling of maximum, minimum temperatures and precipitation involve: (1) quality check, 

transformation, screening of probable predictors. (2) calibration the model using station scale predictands data 

with the selected predictors of NCEP/NCAR. (3) generation of present and future time series for predictands from 

the gridded datasets of NCEP/NCAR and GCMs, and (4) statistical analysis of downscaled projected predictands 

at each individual station. The various steps followed in the present study for downscaling and scenario generation 

are shown in (Fig 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Flow chart showing steps involved in downscaling and scenario generation (modified after Wilby and 

Dawson 2007) 

 

Screening of probable predictors: Identifying empirical relationships between gridded predictors (such as mean 

sea level pressure) and (such as station precipitation) is central to all statistical downscaling methods. The main 

purpose of the ‘Screen Variables’ operation is to assist the user in the choice of appropriate downscaling predictor 

variables. This remains one of the most challenging stages in the development of any statistical downscaling 

model since choice of the predictors largely determines the character of the downscaled climate scenario (Wilby 

et al. 2002). The choice of predictors can be different for various geographical regions depending on the properties 

of the predictor and the predictand to be downscaled (Anandhi et al. 2009). In order to consider predictor-

predictand relationship for all months in a year, annual analysis was used. Conditional process was selected for 

precipitation, where amounts depend on weteday occurrence and unconditional process for temperature. In 

selection of predictor predictand relationship, the default values were significance level of p < 0.05 and partial 

correlation of r ±1 (Wilby and Dawson, 2007). The predictor variables were selected based on the explained 

variance and correlation between predictor-predictand relationships being analysed in SDSM 5.2. Therefore, sets 

of predictor variables which have p-value  (0_ p _0.05) were taken as best-correlated predictors with individual 

predictand. Due to variation of SDSM performance in different geographical locations, it is advised not to limit 

the performance level on explained variance. 
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Calibration and validation: The model calibration take specified predictand along with a set of predictor 

variables and computes parameters of multiple regression equation through optimization algorithm (either simplex 

or ordinary least square). Then the model structure is specified as conditional for temperature and unconditional 

for precipitation. In the case of conditional model structure, where direct process between regional forcing and 

local weather is assumed, the sub models are selected in monthly, seasonal or annual analysis. By selecting one 

of these model types, the model decides how the regression parameters should be developed (for example, if a 

model type of monthly is selected, then the model develops one regression equation for the whole months and if 

annual model type is selected again one regression equation is developed for the whole one year and so on). In 

this study, the annual model was selected to evaluate the output for all months in a year. The 30 years observed 

data was divided into two periods. The period (1961-1981) and (1971-2000) of daily data was used for model 

calibration and the period (1982-1990) and (1992-2000) was used for model validation. The conditional sub-

model was applied for precipitation with fourth root transformation. Optimization of the best fit was achieved by 

OLS. Validation is required as a subsequent process to calibration. Daily dataset for the period of 1982–1990 and 

1992-2000 was selected for the validation of each predictand (precipitation). Validation of SDSM was carried out 

by comparing the average generated twenty ensembles of synthetic weather series using NCEP-reanalysis data 

used for calibration of the model with those counterparts from the observations. 

 

Downscaling future climate: In this study, the calibrated model was used in further analysis i.e. assessing future 

climate changes on temperature and precipitation over three periods by downscaling the A2 and B2 scenarios 

predictors obtained from the HadCM3 model. To achieve that, the built-in SWG was employed to generate 20 

ensembles of future predictands. Ultimately, the downscaled future climate change predictands in the 2020s 

(2011–2040), 2050s (2041–2070), and 2080s (2071–2099) were compared with those in the baseline period 

(1961–1990). The reasons behind using period from 1961 to 1990 as baseline are attributed to the facts that this 

period is long enough to define local climate because it is likely to have dry, wet, cool, and warm periods, 

therefore, the length of 30 years period is recommended by the IPCC for use as a baseline period (Gebremeskel 

et al. 2005). In addition, it has been utilized in most climate change studies (Huang et al. 2011). The anomaly of 

monthly precipitation was obtained from the percentage change of average 20-ensemble future predictand with 

respect to the baseline period monthly average.  

 

SDSM Performance Evaluation: In order to evaluate the SDSM performance with respect to the observed 

precipitation data, the following three statistical model performance evaluations measures were applied. The R2 

value indicates the correlation between the observed and simulated values, and E measures how well the plot of 

the observed against the simulated.    

 

Coefficient of Determination (R2) 

It was given by (Krause and Boyle 2005) as shown in (Eq. 1) is a measure used to determine the variability in 

observed data that the model could capture it.                       

  𝑅2 =
( ∑[𝑋𝑖−𝑋𝑎𝑣][𝑌𝑖−𝑌𝑎𝑣])2

∑(𝑋𝑖−𝑋𝑎𝑣)2 ∑(𝑌𝑖−𝑌𝑎𝑣)2                                                                                         (1) 

 

Nash–Sutcliffe Coefficient (NSE) 

The NSE is a dimensionless model evaluation statistic where the relative magnitude of the residual variance is 

determined in comparison to the observed variance (Nash and Sutcliff 1970): 

𝐸 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1

∑ (𝑋𝑖 − 𝑌𝑎𝑣)2𝑛
𝑖=1

                                                                                                       (2) 

 

Root Mean Square Error (RMSE) 

The RMSE is an error index type of model evaluation statistics (dimensional). The closer value to zero, the better 

model performance (Singh et al. 2004).  

 

RMSE =  √
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1

𝑛
                                                                                                   (3)  

IV. RESULTS AND DISCUSSION 
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Screening of predictors : The best-correlated predictor variables were selected for each station's predictands 

(precipitation) and are listed in Table 4 along with their corresponding p-value and partial r. These variables were 

then used for calibration of the SDSM. However, for the case of precipitation, the correlation (partial r) for 

individual predictand and sets of predictors was not satisfactory (it is satisfactory when partial r is ±1). This is due 

to its conditional behavior of precipitation where there is an intermediate process between the regional forcing 

and local weather (e.g., precipitation amount depends on wet/dry-day occurrence. As it can be seen in Tables 4, 

the driving parameters on precipitation with significance level p <0.05 were varied (Table 4). In other words, 

“Shum”, “p500”,  “p5_u” and  “ptemp” were the most effective parameters on precipitation at all stations. These 

parameters are associated and highly correlated to precipitation occurrence because their synchronous variation 

is dependent to the saturated phase of water vapour in the air (Hessami et al. 2008). The significant deriving 

parameters were subsequently used in the SDSM calibration. 

 

Table (4): Significantly effective HadCM3 predictors for precipitation screening 

 

station Predictor P.r P station Predictor P.r P 

Baghdad 

 

mean sea 

level pressure 

500 hpa U-

component       

500 hpa 

vorticity 

500 hpa 

geopotential 

mean  

temperature at 

2m 

0.053 

-0.012 

-0.022 

-0.003 

-0.186 

0.0001 

0.0000 

0.0000 

0.0010 

0.0000 

Erbil 

 

mean sea level 

pressure 

500hpa 

geopotential 

height 

500 hpa U-

component 

1hpa specific 

humidity 

500 hpa wind 

direction 

temperature at 

2m 

   -

0.001 

-0.404 

0.098 

-0.301 

-0. 18 

0.120 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Basra 

 

 

500 hpa U-

component  

500 hpa 

geopotential  

1 hpa specific 

humidity  

850hpa 

geopotential 

height 

850 hpa 

vorticity 

temperature at 

2m 

0.08 

0.0411 

-0.092 

-0.126 

0.034 

0.004 

0.0000 

0.0019 

0.0000 

0.0002 

0.0000 

0.0003 

Kirkuk 

 

1hpa 

meridional 

velocity 

500hpa 

geopotential 

height 

850hpa 

meridional 

velocity 

850hpa 

geopotential 

height 

850hpa 

divergence 

specific 

humidity at 

850 hpa 

mean 

temperature at 

2m 

0.054 

-0.007 

-0.04 

-0.88 

-0.015 

0.125 

-0.015 

0.0000 

0.0009 

0.0211 

0.0004 

0.0000 

0.0002 

0.0007 

Zakho 

 

mean sea 

level pressure 

500 hpa U-

component 

 500 hpa V-

component 

-0.087 

0.049 

-0.82 

0.103 

-0.34 

-0.064 

0.0002 

0.0000 

0.0000 

0.0002 

0.0011 

0.0042 

Salah ad Din 

 

500hpa 

geopotential 

height 

500 hpa U-

component 

0.005 

0.004 

-0.107 

-0.124 

0.216 

0.0006 

0.00011 

0.0000 

0.0122 

0.0043 
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850 hpa 

vorticity  

1hpa specific 

humidity 

500 hpa 

geopotential 

500 hpa 

divergence 

850 hpa 

vorticity 

temperature at 

2m 

Al-Hay 

 

500 hpa 

vorticity  

500 hpa wind 

direction 

850hpa 

geopotential 

height 

1hpa specific 

humidity 

temperature at 

2m 

-0.107 

-0.156 

0.075 

-0.403 

0.67 

0.0000 

0.0002 

0.0034 

0.0002 

0.0017 

Mosul 

 

1hpa 

meridional 

velocity 

1hpa vorticity 

500hpa 

vorticity 

500hpa 

geopotential 

height 

850hpa 

meridional 

velocity 

850hpa 

vorticity 

850hpa 

geopotential 

height 

specific 

humidity at 

850 hpa 

0.001 

0.098 

-0.124 

-0.014 

0.005 

-0.205 

0.001 

-0.078 

0.0052 

0.0110 

0.0000 

0.0000 

0.0002 

0.0018 

0.0000 

0.00001 

Khanaqin 

 

mean sea 

level pressure 

850  hpa U-

component 

500hpa 

vorticity 

500hpa 

geopotential 

height 

1hpa specific 

humidity 

mean 

temperature at 

2m 

-0.005 

0.104 

-0.54 

-0.013 

0.109 

-0.012 

0.00 

0.0346 

0.0004 

0.000 

0.0341 

0.000 

Sulaymaniyah 

 

850hpa 

geopotential 

height 

850hpa 

divergence 

850 hpa 

vorticity 

1hpa specific 

humidity 

500 hpa U-

component 

850 hpa V-

component 

-0.002 

0.108 

0.130 

-0.86 

0.0270 

0.031 

0.0000 

0.0104 

0.0404 

0.0023 

0.0000 

0.0012 

Najaf 

 

mean sea 

level pressure 

500hpa 

geopotential 

height 

specific 

humidity 

at850hpa 

500 hpa V-

component 

-0.106 

-0.328 

0.001 

-0.125 

0.0000 

0.0000 

0.0000 

0.0000 

Nasiriyah 

 

mean sea level 

pressure 

500 hpa V-

component 

mean 

temperature at 

2m 

-0.134 

0.066 

0.235 

0.0000 

0.0114 

0.0012 
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Calibration and validation: The 30 years baseline (observed) data was used for calibration (1961-1981), (1971-

1991) and validation (1982-1990), (1992-2000) of SDSM. According to Wilby and Dawson (2004), in conditional 

model, there is an intermediate process between regional forcing and local weather (e.g.,local precipitation 

amounts depend on wet/dry day occurrence). As indicated in the previous studies above, this is hardly captured 

well in SDSM. Therefore, downscaling for precipitation is problematic than temperature (Hassan 2011). The 

results of calibration and validation are illustrated in Tables 5 and 6, respectively. 

 

Table (5): Statistical performance of precipitation modeling during calibration 

 

Station name RMSE R2 NSE 

Baghdada 0.77 0.69 0.71 

Basrah 0.84 0.67 0.70 

Erbil 0.95 0.60 0.53 

Al-Hay 0.39 0.61 0.77 

Khaniqin 0.34 0.56 0.86 

Kirkuk 0.44 0.61 0.70 

Mosul 0.36 0.50 0.66 

Najaf 0.49 0.73 0.60 

Nasiriya 0.73 0.73 0.72 

Salah ad Din 0.37 0.51 0.73 

Zakho 0.47 0.50 0.80 

Sulaymaniyah 0.34 0.71 0.77 

 

Table (6): Statistical performance of precipitation modeling during validation 

 

Station name RMSE R2 NSE 

Baghdada 0.79 0.54 0.68 

Basrah 0.57 0.61 0.66 

Erbil 0.83 0.73 0.86 

Al-Hay 0.77 0.80 0.64 

Khaniqin 1.01 0.82 0.76 

Kirkuk      0.37       0.53       0.69 

Mosul 0.39 0.77 0.87 

Najaf 0.74 0.65 0.80 

Nasiriya 0.86 0.66 0.74 

Salah ad Din 0.88 0.89 0.67 

Zakho 0.54 0.50 0.86 

Sulaymaniyah 0.45 0.62 0.66 

 

Tables 5 and 6 list the statistical evaluation performances of precipitation predictand during the calibration and 

validation, respectively. It can be noticed from Table 5 that the RMSE, R2, and NSE were less than 0.95 mm, 

greater than 0.73, and greater than 0.86, respectively across all the stations during the calibration. According to 

this evaluation, it can be judged that the observed and the modelled data were consistent. In other words, the 

SDSM were sufficiently capable to reproduce the observed Tmin data. During the validation period, the values of 

RMSE, R2, and NSE were less than 1.01 mm, greater than 0.89, and greater than 0.86 across all the stations, 

respectively (Table 6).  

 

Downscaling future climate scenarios : After the statistical downscaling model performance has been checked, 

the GCM simulations from HadCM3 SRES A2 and B2 scenarios of represent future climate is used to generate 

synthetic daily precipitation series. The SDSM model developed for each site was used to predict future daily 

precipitation in the sites for the periods of 2011-2040 (near future), 2041-2070 (medium future), and 2071-2100 

(far future) depended on the A2 and B2 scenarios generated from HadCM3. The best way of evaluating the 
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characteristics of change in precipitation pattern is the annual statistics. Fig4 shows projected change of annual 

precipitation for stations for three future periods. The change in climate was calculated by subtracting rainfall 

values of the future period from baseline period. Monthly change in rainfall shows that, there is decrees in rainfall 

in all months As it can be noticed, that the annual precipitation in Baghdad was projected to negatively change by 

-15%, -22% and -11% by A2 and -23%, -28%, -10% by B2 during 2020s, 2050s and 2080s, respectively with 

respect to the baseline period.  

 

The average annual rainfall was projected to decrease in Basra station by -6%,              and -8.1% and -15% by 

A2 and -8%, -18%, -25% by B2 during 2020s, 2050s and 2080s, respectively (Fig. 4). 

With respect to the precipitation, the average annual rainfall in Erbil station will change by -9%, -18% and -21% 

by A2 and -10%, -20%, -16% by B2 during 2020s, 2050s and 2080s, respectively(Fig 4). 

The projected change in the average annual rainfall for Zakho station was projected to change by -10% and -12%, 

-33% by A2 and 12%, -20%, -28%by B2 during 2020s, 2050s and 2080s, respectively (Fig.4). 

The average annual rainfall for Selamaniyah station will likely decrease by -40%        and -22%, -33% by A2 and 

-15%, -18%, -38% by B2 during 2020s, 2050s and 2080s, respectively (Fig 4). 

The average annual rainfall for Salah ad Din station was projected to decrease by -10%, -22% and -33% by A2 

and -15%, -18%, -38% by B2 during 2020s, 2050s and 2080s, respectively (Fig 4). 

The average annual rainfall for Mosul station was projected to decrease by -12%          and 1%, -1% by A2 and -

15%, 4%, -5% by B2 during 2020s, 2050s and 2080s, respectively (Fig 4). 

For Khaniqin station the average annual rainfall will change by -11%                                 and -20%, -15% by A2 

and -10.58%, -27.99%, -33% by B2 during 2020s, 2050s and 2080s, respectively (Fig 4). 

In Kirkuk station, the average annual rainfall was projected to slightly decrease by             5.32% and -7.1%, -

1.8% by A2 and 5.87%, -10.96%, -11% by B2 during 2020s, 2050s and 2080s, respectively (Fig 4). 
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Fig. 4 Change in average annual rainfall in the future for H3A2 and H3B2 scenario. 

 

V. DISCUSSION 
Statistical Downscaling Model (SDSM) was applied using three set of data; observed daily precipitation for the 

period of 1961-1990 and 1971-2000, twelve station and NCEP re-analysis data composed of 26 daily atmospheric 

variables for the same period which are selected at grid box covering each of the stations considered . HadCM3 

SRES A2 and B2 emission scenarios SDSM have used. NCEP reanalysis data of gridded large atmospheric 

variables as predictors and station data as predictands. The outcomes from this study pointed an decrease in 

precipitation across the country. The results show that the decrease in annual precipitation is more remarkable in 

the northern (Sulaymaniyah, Salah ad Din , Zakho and Khaniqin ) stations than those the southern part of the 

country. The greatest decrease in annual precipitation was observed in Sulayrnaniyah at the end of 2020s under 

H3A2 and 2080s under H3B2. While, the lowest decrease was detected in Najaf, Basra and Nasiriya station. 

Though that the general trend tends towards a decrease in precipitation across the country, some stations like 

Kirkuk, Mosul and Al-Hay show a slight increase in the annual precipitation during the 2020s and 2050s, 

Respectively. Such as unforeseen trend is physically uninlerpretable especially that most of the surrounded 

stations show decreasing in the same periods. However, the uncertainty in measurements and modelling results 

could be the essential reasons behind.  

 

VI. CONCLUSIONS 
SDSM (hybrid of MLR and SWG based downscaling technique) is used to downscale and generate long-term 

(2011–2040, 2041–2070 and 2071–2099) future scenarios of climate variables (precipitation) from predictors of 

HadCM3 models. These future scenarios are generated under forcings of A2 and B2 emission scenarios. The 

annual sub-model of SDSM is found proficient in downscaling The calibrated model was then utilized to simulate 

future climatological parameters depended on the outputs of SDSM driven by GCMs under the climate change 

scenarios as established. Thus, the impacts of climate change on most stations of Iraq under the three scenarios 

were comprehensively analyzed.   

 

The most notable conclusions of this present study can be summarized as follows: The future precipitation 

will grow more complex and uncertain; there were significant differences between A2 and B2. Overall, annual 

precipitation in Had3CM3 will apparently to decrease in the future. There is a clear trend of precipitation reduction 

in the study region. The findings obtained from this study can be of use to help policy makers in making decisions 
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and planning for adaptation of impacts of climate changes. Moreover, the results can provide a support for better 

water resources management in Iraq.  
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